Skip to main content

Advertisement

Log in

Comparative Analysis of Microstructure Evolution and Mechanical Properties of Dissimilar Welded Joints of AA7075/AA6061 via Friction Stir Welding, Tungsten Inert Gas Welding, and Tungsten Inert Gas + Friction Stir Processing

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study aimed to investigate the detailed microstructure and mechanical characteristics of welded butt joints in dissimilar AA7075/AA6061. Three different welding methods were employed for the comparison: TIG (tungsten inert gas), FSW (friction stir welding) and TIG + FSP (FSP over TIG). Aluminum plates were welded using TIG along the rolling direction. The joint produced by FSW was created using a tool rotating at 931 rpm and a transverse speed of 40 mm/min. To characterize the microstructure evolution of the welded joints, we utilized optical microscopy (OM) and FE-SEM (field emission scanning electron microscopy) along with EBSD (electron backscattered diffraction). Additionally, FE-SEM with high magnification examined the fracture surface of tensile-tested specimens. The results of the study revealed valuable insights into the mechanical properties and microstructure evolution of the three welding methods. It was found that TIG + FSP exhibited superior mechanical strength (233 MPa). In contrast, TIG and FSW methods showed ultimate tensile strength of 195 MPa and 158 MPa, respectively. NZ maximum hardness in the nugget zone (128 HV) was found through TIG + FSP as compared to TIG (108 HV) and FSW (121 HV). This outcome can be attributed to refined grain (smallest grain 7.2 µm) structure with defect-free bonding achieved through TIG + FSP. The TEM analysis revealed valuable insights into the precipitate’s size. It revealed that the FSWed and TIG + FSPed samples show fine precipitates. Meanwhile, in the TIG welded sample, the coarse precipitates. The hybrid TIG + FSP approach leads to promising techniques for various industry applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B.T. Gibson, D.H. Lammlein, T.J. Prater, W.R. Longhurst, C.D. Cox, M.C. Ballun, K.J. Dharmaraj, G.E. Cook, and A.M. Strauss, Friction Stir Welding: Process, Automation, and Control, Journal of Manufacturing Processes, The Society of Manufacturing Engineers, 2014, 16(1), p 56–73. https://doi.org/10.1016/j.jmapro.2013.04.002

    Article  Google Scholar 

  2. S.W. Kallee, “Industrial Applications of Friction Stir Welding”, Friction Stir Welding: From Basics to Applications, Woodhead Publishing Limited, 2009 https://doi.org/10.1533/9781845697716.1.118

    Article  Google Scholar 

  3. M.A. Wahid, A.N. Siddiquee, and Z.A. Khan, Aluminum Alloys in Marine Construction: Characteristics, Application, and Problems from a Fabrication Viewpoint, Marine Systems and Ocean Technology, Springer International Publishing, 2020, 15(1), p 70–80. https://doi.org/10.1007/s40868-019-00069-w

    Article  Google Scholar 

  4. M. Koilraj, V. Sundareswaran, S. Vijayan, and S.R. Koteswara Rao, Friction Stir Welding of Dissimilar Aluminum Alloys AA2219 to AA5083 - Optimization of Process Parameters Using Taguchi Technique, Materials and Design, Elsevier Ltd, 2012, 42, p 1–7, doi:https://doi.org/10.1016/j.matdes.2012.02.016.

  5. C. Rajendran, K. Srinivasan, V. Balasubramanian, H. Balaji, and P. Selvaraj, Feasibility Study of FSW, LBW and TIG Joining Process to Fabricate Light Combat Aircraft Structure, International Journal of Lightweight Materials and Manufacture, Elsevier Inc, 2021, 4(4), p 480–490.

    CAS  Google Scholar 

  6. T. Senthil Kumar, V. Balasubramanian, and M.Y. Sanavullah, Influences of Pulsed Current Tungsten Inert Gas Welding Parameters on the Tensile Properties of AA 6061 Aluminium Alloy, Materials and Design, 2007, 28(7), p 2080–2092.

  7. S. Sinhmar and D.K. Dwivedi, A Study on Corrosion Behavior of Friction Stir Welded and Tungsten Inert Gas Welded AA2014 Aluminium Alloy, Corrosion Science, Elsevier, 2018, 133(January), p 25–35. https://doi.org/10.1016/j.corsci.2018.01.012

    Article  CAS  Google Scholar 

  8. R. Rana, D.B. Karunakar, and A. Karmakar, Influence of Different Tool Profiles and Process Parameters on Mechanical Properties of Dissimilar AA6061 and AA7075 Aluminium Alloys by Friction Stir Welding, Lecture Notes in Mechanical Engineering, 2021, p 201–207.

  9. W.M.T.E. D., J.C. Nicholas, M.G. Needham, Saffron Walden, H.P.T.-S. Murch, C.J. Dawes, Cambridge, and Cambs, “FRICTION WELDING,” (United Kingdom), 1995.

  10. R. Rana, A. Karmakar, and D.B. Karunakar, Effect of Tool Travel Rate on Microstructure Evolution and Mechanical Properties of Dissimilar Friction Stir Welded Joints of AA7075 and AA6061 Aluminium Alloys, Journal of Materials Engineering and Performance, Springer US, 2023, (Ref 32), doi:https://doi.org/10.1007/s11665-023-08759-8.

  11. A. Kumar and S. Sundarrajan, Selection of Welding Process Parameters for the Optimum Butt-Joint Strength of an Aluminum Alloy, Mater. Manuf. Processes, 2006, 21(8), p 779–782.

    Article  CAS  Google Scholar 

  12. X. Cao, W. Wallace, J.P. Immarigeon, and C. Poon, Research and Progress in Laser Welding of Wrought Aluminum Alloys. II. Metallurgical Microstructures, Defects, and Mechanical Properties, Materials and Manufacturing Processes, 2003, 18(1), p 23–49.

  13. R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, and A.K. Mukherjee, High Strain Rate Superplasticity in a Friction Stir Processed 7075 Al Alloy, Scripta Mater., 1999, 42(2), p 163–168.

    Article  Google Scholar 

  14. R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R. Rep., 2005, 50(1–2), p 1–78.

    Article  Google Scholar 

  15. Y.N. Zhang, X. Cao, S. Larose, and P. Wanjara, Review of Tools for Friction Stir Welding and Processing, Can. Metall. Q., 2012, 51(3), p 250–261.

    Article  CAS  Google Scholar 

  16. R. Rana, D.B. Karunakar, and A. Karmakar, “A Comparison of Microstructure and Mechanical Properties of TIG and MIG Welded Dissimilar AA7075 / AA6061 Aluminium Alloys Subjected to Friction Stir Processing,” 2023, doi:https://doi.org/10.1115/MSEC2023-107716.

  17. B.T. Voonna, S.S. Angara, J.S. Vavilapalli, Y.V. Datla, and S.K. Selvaraj, Some Studies of Nanoparticle Properties for Dissimilar Materials on the Surface Features Created by EBW and LBW, Materials Today: Proceedings, Selection and peer-review under responsibility of the scientific committee of the 3rd International Conference on Materials, Manufacturing and Modelling, 2021, 46, p 7271–7283, doi:https://doi.org/10.1016/j.matpr.2020.12.982.

  18. S. Sinhmar, D.K. Dwivedi, and V. Pancholi, Friction Stir Processing of AA 7039 Alloy, 2014, (December).

  19. C.B. Fuller and M.W. Mahoney, “The Effect of Friction Stir Processing on 5083-H321/5356 Al Arc Welds: Microstructural and Mechanical Analysis,” n.d.

  20. H. Mehdi and R.S. Mishra, Study of the Influence of Friction Stir Processing on Tungsten Inert Gas Welding of Different Aluminum Alloy, SN Applied Sciences, Springer International Publishing, 2019, 1(7), p 1–11. https://doi.org/10.1007/s42452-019-0712-0

    Article  CAS  Google Scholar 

  21. S. Sinhmar and D.K. Dwivedi, Influence of a Stationary Shoulder Friction Stir Welding Tool on the Mechanical and Corrosion Properties of AA2024 Aluminum Alloy Joints at Different Parameter Values, Journal of Materials Engineering and Performance, Springer US, 2023, (Ref 16), doi:https://doi.org/10.1007/s11665-023-08893-3.

  22. H. Mehdi and R.S. Mishra, Effect of Friction Stir Processing on Mechanical Properties and Heat Transfer of TIG Welded Joint of AA6061 and AA7075, Defence Technology, Elsevier Ltd, 2021, 17(3), p 715–727. https://doi.org/10.1016/j.dt.2020.04.014

    Article  Google Scholar 

  23. M.W. Mahoney, C.G. Rhodes, J.G. Flintoff, R.A. Spurling, and W.H. Bingel, Properties of Friction-Stir-Welded 7075 T651 Aluminum, 1998, 29(July).

  24. V. Mathur, S.R.P. B, and M.P.G. C, Reinforcement of Titanium Dioxide Nanoparticles in Aluminium Alloy AA 5052 through Friction Stir Process, Advances in Materials and Processing Technologies, Taylor & Francis, 2019, 5(2), p 329–337, doi:https://doi.org/10.1080/2374068X.2019.1585072.

  25. P. Carlone and G.S. Palazzo, Influence of Process Parameters on Microstructure and Mechanical Properties in AA2024-T3 Friction Stir Welding, Metallography, Microstructure, and Analysis, 2013, 2(4), p 213–222.

    Article  CAS  Google Scholar 

  26. A. Heidarzadeh, S. Mironov, R. Kaibyshev, G. Çam, A. Simar, A. Gerlich, F. Khodabakhshi, A. Mostafaei, D.P. Field, J.D. Robson, A. Deschamps, and P.J. Withers, Friction Stir Welding/Processing of Metals and Alloys: A Comprehensive Review on Microstructural Evolution, Progress in Materials Science, Elsevier Ltd, March, 2021(117), 100752. https://doi.org/10.1016/j.pmatsci.2020.100752

    Article  CAS  Google Scholar 

  27. G. Çam, V. Javaheri, and A. Heidarzadeh, Advances in FSW and FSSW of Dissimilar Al-Alloy Plates, Journal of Adhesion Science and Technology, Taylor & Francis, 2023, 37(2), p 162–194. https://doi.org/10.1080/01694243.2022.2028073

    Article  CAS  Google Scholar 

  28. T.R. McNelley, S. Swaminathan, and J.Q. Su, Recrystallization Mechanisms during Friction Stir Welding/Processing of Aluminum Alloys, Scripta Mater., 2008, 58(5), p 349–354.

    Article  CAS  Google Scholar 

  29. T.F. Chung, Y.L. Yang, M. Shiojiri, C.N. Hsiao, W.C. Li, C.S. Tsao, Z. Shi, J. Lin, and J.R. Yang, An Atomic Scale Structural Investigation of Nanometre-Sized η Precipitates in the 7050 Aluminium Alloy, Acta Materialia, Elsevier Ltd, 2019, 174, p 351–368. https://doi.org/10.1016/j.actamat.2019.05.041

    Article  CAS  Google Scholar 

  30. H. Jamshidi Aval, S. Serajzadeh, N.A. Sakharova, A.H. Kokabi, and A. Loureiro, A Study on Microstructures and Residual Stress Distributions in Dissimilar Friction-Stir Welding of AA5086-AA6061, Journal of Materials Science, 2012, 47(14), p 5428–5437.

  31. H. Jamshidi Aval, Influences of Pin Profile on the Mechanical and Microstructural Behaviors in Dissimilar Friction Stir Welded AA6082-AA7075 Butt Joint, Materials and Design, Elsevier Ltd, 2015, 67, p 413–421, doi:https://doi.org/10.1016/j.matdes.2014.11.055.

  32. K.V. Jata and S.L. Semiatin, Continuous Dynamic Recrystallization during Friction Stir Welding of High Strength Aluminum Alloys, Scripta Mater., 2000, 43(8), p 743–749.

    Article  CAS  Google Scholar 

  33. R. Priya, V. Subramanya Sarma, and K. Prasad Rao, Effect of Post Weld Heat Treatment on the Microstructure and Tensile Properties of Dissimilar Friction Stir Welded AA 2219 and AA 6061 Alloys, Transactions of the Indian Institute of Metals, 2009, 62(1), p 11–19.

  34. J. Verma, R.V. Taiwade, C. Reddy, and R.K. Khatirkar, Effect of Friction Stir Welding Process Parameters on Mg-AZ31B/Al-AA6061 Joints, Taylor & Francis, 2018, 33(3), p 308–314. https://doi.org/10.1080/10426914.2017.1291957

    Article  CAS  Google Scholar 

  35. N.A. Liyakat and D. Veeman, Improvement of Mechanical and Microstructural Properties of AA 5052–H32 TIG Weldment Using Friction Stir Processing Approach, Journal of Materials Research and Technology, The Authors, 2022, 19, p 332–344. https://doi.org/10.1016/j.jmrt.2022.05.015

    Article  CAS  Google Scholar 

  36. S. Mabuwa, V. Msomi, H. Mehdi, and K.K. Saxena, Effect of Material Positioning on Si-Rich TIG Welded Joints of AA6082 and AA8011 by Friction Stir Processing, Journal of Adhesion Science and Technology, Taylor & Francis, 2022, 0(0), p 1–19, doi:https://doi.org/10.1080/01694243.2022.2142366.

  37. L. Luo, B. hai Yang, X. rong Yang, X. yan Liu, and J. zhong Wang, Effect of Room Temperature Multi-Pass ECAP Deformation on Mechanical Properties and Precipitation Phase Distribution of 7075 Aluminium Alloy, Journal of Central South University, 2023, 30(2), p 374–386.

  38. T. Luijendijk, Welding of Dissimilar Aluminium Alloys, J. Mater. Process. Technol., 2000, 103(1), p 29–35.

    Article  Google Scholar 

  39. K. Colligan, Material Flow Behavior during Friction Stir Welding of Aluminum, Welding Journal (Miami, Fla), 1999, 78(7), p 229-s.

  40. W. Xu, J. Liu, G. Luan, and C. Dong, Microstructure and Mechanical Properties of Friction Stir Welded Joints in 2219–T6 Aluminum Alloy, Materials and Design, Elsevier Ltd, 2009, 30(9), p 3460–3467. https://doi.org/10.1016/j.matdes.2009.03.018

    Article  CAS  Google Scholar 

  41. Ç. Yeni, S. Sayer and M. Pakdil, Comparison of Mechanical and Microstructural Behaviour of TIG, MIG and Friction Stir Welded 7075 Aluminium Alloy, Kovove Materialy, 2009, 47(5), p 341–347.

    CAS  Google Scholar 

  42. K. Prasad and D.K. Dwivedi, Some Investigations on Microstructure and Mechanical Properties of Submerged Arc Welded HSLA Steel Joints, Int. J. Adv. Manuf. Technol., 2008, 36(5–6), p 475–483.

    Article  Google Scholar 

  43. K. Li, C.S. Li, Y. Song, B. zhou Li, J. Dong, R. Wang, and Y. Zhang, Evaluation of the Microstructure and Performance of Fe-21Cr-15Ni-6Mn-Nb Nonmagnetic Stainless Steel Welded Joints, Journal of Materials Engineering and Performance, Springer US, 2019, 28(8), p 5220–5232, doi:https://doi.org/10.1007/s11665-019-04233-6.

  44. P. Li, Y. Gong, C. Liang, Y. Yang, and M. Cai, Effect of Post-Heat Treatment on Residual Stress and Tensile Strength of Hybrid Additive and Subtractive Manufacturing, International Journal of Advanced Manufacturing Technology, The International Journal of Advanced Manufacturing Technology, 2019, 103(5–8), p 2579–2592.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. Karunakar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, R., Karunakar, D.B., Karmakar, A. et al. Comparative Analysis of Microstructure Evolution and Mechanical Properties of Dissimilar Welded Joints of AA7075/AA6061 via Friction Stir Welding, Tungsten Inert Gas Welding, and Tungsten Inert Gas + Friction Stir Processing. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09442-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09442-2

Keywords

Navigation