Skip to main content

Advertisement

Log in

Effects of V Element and Heat Treatment Process on Microstructure and Mechanical Properties of Additive Manufacturing of Titanium Aluminum Alloy Using Flux-Core Arc Welding Wire with TiH2 Powder

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A TiH2 powder-cored wire-based additive manufacturing method utilizing tungsten inert gas is used to fabricate TiAl alloy. The interdependent effects of vanadium elements and heat treatment on microstructure, phase composition, and mechanical properties are examined. The TiAl alloy exhibits a banded microstructure, alternating between the diplex structure and full lamellar regions. Introducing vanadium elements results in a microstructure dominated by the full lamellar region, while subsequent heat treatment processes reduce lamellar thickness. The stable region displays cellular γ and γ lamellar structures, with a 2.3% α2 phase volume fraction. In normal temperature conditions, the alloy has a tensile strength of 243 MPa and an elongation of 0.34%. Incorporating vanadium elements leads to a full lamellar structure, increasing the α2 phase volume fraction to 14%. This modification results in a notable enhancement of tensile strength to 309 MPa and an elongation of 0.4%. Heat treatment processes refine the lamellar structure, leading to a higher α2 phase volume fraction of 65%. Consequently, this significantly improves tensile strength, reaching 416 MPa while increasing elongation to 0.47%. The combined effect of V addition and heat treatment effectively enhanced the TiAl alloy’s strength and ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. X.J. Lei, X.P. Wang, F.T. Kong, H.T. Zhou and Y.Y. Chen, A moving-boundary dynamic model for in-situ alloyed and additive manufacturing TiAl-Nb alloys, J. Manuf. Process., 2022, 73, p 563–571.

    Article  Google Scholar 

  2. Z.Q. Liu, G.L. Yin, X.O. Zhu and Q. Zhou, Microstructure, texture and tensile properties as a function of laser power of Ti48Al2Cr2Nb5Ta alloy prepared by laser additive manufacturing, J. Manuf. Process., 2022, 73, p 624–632.

    Article  Google Scholar 

  3. Y.L. Gao, S.Q. Kou, J.N. Dai, Z.F. Wang, S.L. Shu, S. Zhang, F. Qiu and Q.C. Jiang, Microstructural configuration and compressive deformation behavior of a TiAl composite reinforced by Mn and in situ Ti2AlC particles, Mat. Sci. Eng. A, 2021, 823, 141772.

    Article  CAS  Google Scholar 

  4. H.L. Zhu and K. Maruyama, Interfacial strengthening by soft phase in lamellar microstructure of TiAl alloys, Appl. Phys. Lett., 2007, 90, 171925.

    Article  Google Scholar 

  5. J.Y. Liu, L.Q. Zhang and G.W. Ge, Study of the orientation relationship of the residual α2(Ti3Al) in γ(TiAl) sheet after heat treatment, J. Mater. Eng. Perform., 2022, 31(5), p 4224–4231.

    Article  CAS  Google Scholar 

  6. R. Liu, Y. Jiao, Y.S. Guo, L. Chen, Z.C. Li, A.X. Sha, F. Gao and P.W. Chen, Dynamic behavior and microstructural evolution of TiAl alloys tailored via phase and grain size, J. Mater. Res. Technol., 2023, 22, p 292–306.

    Article  CAS  Google Scholar 

  7. Q.B. Wang, Z.P. Hou, S.Z. Zhang, H. Feng, C.J. Zhang, J.C. Han, W.G. Zhang and R.T. Zhao, Pore structure and compression behavior of porous TiAl alloys by freeze casting, Vacuum, 2020, 175, 109254.

    Article  CAS  Google Scholar 

  8. G.L. Chen, X.J. Xu, Z.K. Teng, Y.L. Wang and J.P. Lin, Microsegregation in high Nb containing TiAl alloy ingots beyond laboratory scale, Intermetallics, 2007, 15(5–6), p 625–631.

    Article  CAS  Google Scholar 

  9. A. Couret, M. Allen, M.W. Rackel, B. Galy, J.P. Monchoux, V. Güther, F. Pyczak, P. Sallot and M. Thomas, Chemical heterogeneities in tungsten containing TiAl alloys processed by powder metallurgy, Materialia, 2021, 18, 101147.

    Article  CAS  Google Scholar 

  10. C. Zhang, S.H. Zhang, Y. Pan, W. Xu, H.P. Singh, B. Liu, D. Liu, H.L. Wang, J.Z. Zhang and X. Liu, Effect of Sn addition on the mechanical properties and high-temperature oxidation resistance of intermetallic TiAl alloys by first principles study and experimental investigation, J. Mater. Res. Technol., 2022, 21, p 3666–3677.

    Article  CAS  Google Scholar 

  11. X. Zhang, Q.H. Lu, P.L. Zhang, Z.S. Yu, C. Shen, L. Wang and X.M. Hua, Microstructure and fatigue properties of Ti-48Al alloy fabricated by the twin-wire plasma arc additive manufacturing, J. Mater. Eng. Perform., 2022, 31(10), p 8250–8260.

    Article  CAS  Google Scholar 

  12. M. Todai, T. Nakano, T.Q. Liu, H.Y. Yasuda, K. Hagihara, K. Cho, M. Ueda and M. Takeyama, Effect of building direction on the microstructure and tensile properties of Ti-48Al-2Cr-2Nb alloy additively manufactured by electron beam melting, Addit. Manuf., 2017, 13, p 61–70.

    CAS  Google Scholar 

  13. C.L. Ma, D.D. Gu, D.H. Dai, H.M. Zhang, L. Du and H. Zhang, Development of interfacial stress during selective laser melting of TiC reinforced TiAl composites: influence of geometric feature of reinforcement, Mater. Des., 2018, 157, p 1–11.

    Article  Google Scholar 

  14. M.S. Wang, E.W. Liu, Y.L. Du, T.T. Liu and W.H. Liao, Cracking mechanism and a novel strategy to eliminate cracks in TiAl alloy additively manufactured by selective laser melting, Scr. Mater., 2021, 204, 114151.

    Article  CAS  Google Scholar 

  15. H.Y. Yue, H. Peng, R.F. Li, J.X. Yang, R.Q. Gao, S.Z. Zhang, X.P. Wang and Y.Y. Chen, Metastable phase and microstructural degradation of a TiAl alloy produced via selective electron beam melting, Vacuum, 2021, 192, p 110491.

    Article  CAS  Google Scholar 

  16. H.Y. Yue, H. Peng, R.F. Li, Y.J. Su, Y. Zhao, K. Qi and Y.Y. Chen, Selective electron beam melting of TiAl alloy: metallurgical defects, tensile property, and determination of process window, Adv. Eng. Mater., 2023, 77, 103811.

    Google Scholar 

  17. H.P. Qu and H.M. Wang, Microstructure and mechanical properties of laser melting deposited γ-TiAl intermetallic alloys, Mater. Sci. Eng. A, 2007, 466(1–2), p 187–194.

    Article  Google Scholar 

  18. L. Löber, F.P. Schimansky, U. Kühn, F. Pyczak and J. Eckert, Selective laser melting of a beta-solidifying TNM-B1 titanium aluminide alloy, J. Mater. Process. Technol., 2014, 214(9), p 1852–1860.

    Article  Google Scholar 

  19. G. Baudana, S. Biamino, D. Ugues, M. Lombardi, P. Fino, M. Pavese and C. Badini, Titanium aluminides for aerospace and automotive applications processed by electron beam melting: contribution of Politecnico di Torino, Met. Powder Rep., 2016, 71(3), p 193–199.

    Article  Google Scholar 

  20. C.R. Cunningham, J.M. Flynn, A. Shokrani, V. Dhokia and S.T. Newman, Invited review article: strategies and processes for high quality wire arc additive manufacturing, Addit. Manuf., 2018, 22, p 672–686.

    Google Scholar 

  21. B. Baufeld and O. Biest, Mechanical properties of Ti-6Al-4V specimens produced by shaped metal deposition, Sci. Technol. Adv. Mat., 2009, 10(1), 015008.

    Article  Google Scholar 

  22. F.J. Xu, Y.H. Lv, Y.X. Liu, F.Y. Shu, P. He and B.S. Xu, Microstructural evolution and mechanical properties of inconel 625 alloy during pulsed plasma arc deposition process, J. Mater. Sci. Technol., 2013, 29(5), p 480–488.

    Article  CAS  Google Scholar 

  23. J.Y. Bai, C.L. Yang, S.B. Lin, B.L. Dong and C.L. Fan, Mechanical properties of 2219-Al components produced by additive manufacturing with TIG, Int. J. Adv. Manuf. Technol., 2016, 86, p 479–485.

    Article  Google Scholar 

  24. R.J. Sun, L.H. Li, Y. Zhu, W. Guo, P. Peng, B.Q. Cong, J.F. Sun, Z.G. Che, B. Li, C. Guo and L. Liu, Microstructure, residual stress and tensile properties control of wire-arc additive manufactured 2319 aluminum alloy with laser shock peening, J. Alloys Compd., 2018, 747, p 255–265.

    Article  CAS  Google Scholar 

  25. Z.X. Pan, D.H. Ding, B.T. Wu, D. Cuiuri, H.J. Li and J. Norrish, Arc welding processes for additive manufacturing: a review. In: Transactions on Intelligent Welding Manufacturing, Vol. 1, No. 1, 2017, p 3–24.

  26. Y. Ma, D. Cuiuri, N. Hoye, H.J. Li and Z.X. Pan, Effects of wire feed conditions on in situ alloying and additive layer manufacturing of titanium aluminides using gas tungsten arc welding, J. Mater. Res., 2014, 29, p 2066–2071.

    Article  CAS  Google Scholar 

  27. Y.B. Tian, J.Q. Shen, S.S. Hu, J. Gou and Y. Cui, Effects of cold metal transfer mode on the reaction layer of wire and arc additive-manufactured Ti-6Al-4V/Al-6.25Cu dissimilar alloys, J. Mater. Sci. Technol., 2021, 74, p 35–45.

    Article  CAS  Google Scholar 

  28. J. Wang, Z.X. Pan, L.L. Wei, S. He, D. Cuiuri and H.J. Li, Introduction of ternary alloying element in wire arc additive manufacturing of titanium aluminide intermetallic, Addit. Manuf., 2019, 27, p 236–245.

    CAS  Google Scholar 

  29. S.N. Gavrilov, O.V. Khitsov, V.B. Dmitriyev, D.L. Popravka, V.G. Lozovoy and V.M. Dzyuba, Metal-powder wires for mechanized and automatic gas-shielded welding of low-carbon and low-alloy steels, Weld. Int., 2013, 28(3), p 234–236.

    Article  Google Scholar 

  30. X.Q. Hou, X. Ye, X.Y. Qian, X. Zhang, P.L. Zhang, Q.H. Lu, Z.S. Yu, C. Shen, L. Wang and X.M. Hua, Heat accumulation, microstructure evolution, and stress distribution of Ti-Al alloy manufactured by twin-wire plasma arc additive, Adv. Eng. Mater., 2022, 24(5), p 2101151.

    Article  CAS  Google Scholar 

  31. Y. Ma, D. Cuiuri, N. Hoye, H.J. Li and Z. Pan, The effect of location on the microstructure and mechanical properties of titanium aluminides produced by additive layer manufacturing using in-situ alloying and gas tungsten arc welding, Mater. Sci. Eng. A, 2015, 631, p 230–240.

    Article  CAS  Google Scholar 

  32. C.M. Liu, X.J. Tian, H.B. Tang and H.M. Wang, Microstructural characterization of laser melting deposited Ti-5Al-5Mo-5V-1Cr-1Fe near β titanium alloy, J. Alloys Compd., 2013, 572, p 17–24.

    Article  CAS  Google Scholar 

  33. K. Kothari, R. Radhakrishnan and N.M. Wereley, Advances in gamma titanium aluminides and their manufacturing techniques, Prog. Aerosp. Sci., 2012, 55, p 1–16.

    Article  Google Scholar 

  34. M. Schloffer, F. Iqbal, H. Gabrisch, E. Schwaighofer, F.P. Schimansky, S. Mayer, A. Stark, T. Lippmann, M. Göken, F. Pyczak and H. Clemens, Microstructure development and hardness of a powder metallurgical multi phase γ-TiAl based alloy, Intermetallics, 2012, 22, p 231–240.

    Article  CAS  Google Scholar 

  35. M. Göken, M. Kempf and W.D. Nix, Hardness and modulus of the lamellar microstructure in PST-TiAl studied by nanoindentations and AFM, Acta Mater., 2001, 49(5), p 903–911.

    Article  Google Scholar 

  36. R. Cao, J.X. Wen, H.J. Liu and J.H. Chen, Notch sensitivity and failure behavior of TiAl and K418 alloys, J. Mater. Eng. Perform., 2018, 27, p 3374–3385.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Key Research and Development Program of China (No. 2022YFB3404700), Taishan Scholars Project (No. tsqn202306136), Fundamental Research Funds for the Central Universities (No. HIT.OCEF.2022043), National Natural Science Foundation of China (No. 52175308).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ting Wang or Liang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Y., Wang, T., Wei, L. et al. Effects of V Element and Heat Treatment Process on Microstructure and Mechanical Properties of Additive Manufacturing of Titanium Aluminum Alloy Using Flux-Core Arc Welding Wire with TiH2 Powder. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09430-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09430-6

Keywords

Navigation