Skip to main content
Log in

A Comprehensive Investigation on Nanomechanical, Scratch, and Tribological Characteristics of TaN-Ag Nanocomposite Coating on Ti6Al7Nb Alloy

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This investigation explores the improvement in mechanical and tribological properties of the Ti6Al7Nb alloy by depositing TaN-Ag (0.5 at.%) nanocomposite coating using magnetron sputtering. The structural properties, morphology, elemental composition, and surface roughness of nanocomposite coating were studied. The effect of nanoindentation load on the hardness (H) and modulus (E) of the substrate and deposited nanocomposite coating was studied. To determine the coefficient of friction and wear rate, tribological tests were performed on the substrate and coating under the applied load range 0.50-1.50 N. Also, scratch test was performed under progressive loading 0-600 mN to determine the critical loads. The results demonstrated that indentation load significantly affects the H, E, and H/E ratio values. The TaN-Ag coating shows reduced wear rate (10−5 mm3/N m) compared to substrate (10−3 mm3/N m). Cracking due to spallation and fine abrasive grooves were main mechanisms responsible for wear of TaN-Ag nanocomposite coating. Raman spectroscopy also confirmed oxide formation during sliding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. I.C. Lavos-Valereto, S. Wolynec, M.C.Z. Deboni, and B. Knig, In Vitro and In Vivo Biocompatibility Testing of Ti-6Al-7Nb Alloy with and Without Plasma-Sprayed Hydroxyapatite Coating, J. Biomed. Mater. Res., 2001, 58(6), p 727–733. https://doi.org/10.1002/jbm.1072

    Article  CAS  PubMed  Google Scholar 

  2. N.A. Al-Mobarak, A.A. Al-Swayih, and F.A. Al-Rashoud, Corrosion Behavior of Ti-6Al-7Nb Alloy in Biological Solution for Dentistry Applications, Int. J. Electrochem. Sci., 2011, 6(6), p 2031–2042. https://doi.org/10.1016/S1452-3981(23)18165-X

    Article  CAS  Google Scholar 

  3. M. Fellah, O. Assala, M. Labaïz, L. Dekhil, and A. Iost, Friction and Wear Behavior of Ti-6Al-7Nb Biomaterial Alloy, J. Biomater. Nanobiotechnol., 2013, 04(04), p 374–384. https://doi.org/10.4236/jbnb.2013.44047

    Article  CAS  Google Scholar 

  4. G. Li, Q. Zhao, H. Tang, G. Li, and Y. Chi, Fabrication, Characterization and Biocompatibility of TiO2 Nanotubes via Anodization of Ti6Al7Nb, Compos. Interfaces, 2016, 23(3), p 1–8. https://doi.org/10.1080/09276440.2016.1128723

    Article  CAS  Google Scholar 

  5. X.Y. Zheng, Y.R. Zhang, and B.R. Zhang, Effect of N-ion Implantation and Diamond-Like Carbon Coating on Fretting Wear Behaviors of Ti6Al7Nb in Artificial Saliva, Trans. Nonferrous Met. Soc. China, 2017, 27(5), p 1071–1080. https://doi.org/10.1016/S1003-6326(17)60125-0

    Article  CAS  Google Scholar 

  6. J. Kim, W.J. Lee, and H.W. Park, Mechanical Properties and Corrosion Behavior of the Nitriding Surface Layer of Ti-6Al-7Nb Using Large Pulsed Electron Beam (LPEB), J. Alloys Compd., 2016, 679, p 138–148. https://doi.org/10.1016/j.jallcom.2016.04.060

    Article  CAS  Google Scholar 

  7. M.A. Domínguez-Crespo et al., Effect of Deposition Parameters on Structural, Mechanical and Electrochemical Properties in Ti/TiN Thin Films on AISI 316L Substrates Produced by r. f. Magnetron Sputtering, J. Alloys Compd., 2018, 746, p 688–698. https://doi.org/10.1016/j.jallcom.2018.02.319

    Article  CAS  Google Scholar 

  8. A.W. Zia, I. Anestopoulos, M.I. Panayiotidis, and M. Birkett, Soft Diamond-like Carbon Coatings with Superior Biocompatibility for Medical Applications, Ceram. Int., 2023, 49(11), p 17203–17211. https://doi.org/10.1016/j.ceramint.2023.02.085

    Article  CAS  Google Scholar 

  9. S.T. Rajan, B. Subramanian, and A. Arockiarajan, A Comprehensive Review on Biocompatible Thin Films for Biomedical Application, Ceram. Int., 2022, 48(4), p 4377–4400.

    Article  Google Scholar 

  10. R. Li et al., Tantalum Nitride Coatings Prepared by Magnetron Sputtering to Improve the Bioactivity and Osteogenic Activity for Titanium Alloy Implants, RSC Adv., 2017, 7(87), p 55408–55417. https://doi.org/10.1039/c7ra09032c

    Article  CAS  Google Scholar 

  11. A.M. Echavarría, P. Rico, J.G. Ribelles, M.A. Pacha-Olivenza, M.C. Fernández-Calderón, and G. Bejarano-G, Development of a Ta/TaN/TaNx (Ag) y/TaN Nanocomposite Coating System and Bio-Response Study for Biomedical Applications, Vacuum, 2017, 145, p 55–67. https://doi.org/10.1016/j.vacuum.2017.08.020

    Article  CAS  Google Scholar 

  12. L. Gladczuk, A. Patel, J.D. Demaree, and M. Sosnowski, Sputter Deposition of bcc Tantalum Films with TaN underlayers for Protection of Steel, Thin Solid Films, 2005, 476(2), p 295–302. https://doi.org/10.1016/j.tsf.2004.10.020

    Article  CAS  Google Scholar 

  13. L. Shi, Z. Yang, L. Chen, and Y. Qian, Synthesis and Characterization of Nanocrystalline TaN, Solid State Commun., 2005, 133(2), p 117–120. https://doi.org/10.1016/j.ssc.2004.10.004

    Article  CAS  Google Scholar 

  14. K. Valleti, A. Subrahmanyam, S.V. Joshi, A.R. Phani, M. Passacantando, and S. Santucci, Studies on Phase Dependent Mechanical Properties of dc Magnetron Sputtered TaN Thin Films: Evaluation of Super Hardness in Orthorhombic Ta4N Phase, J. Phys. D Appl. Phys., 2008, 41(4), p 045409. https://doi.org/10.1088/0022-3727/41/4/045409

    Article  CAS  Google Scholar 

  15. S.S. Firouzabadi, M. Naderi, K. Dehghani, and F. Mahboubi, Effect of Nitrogen Flow Ratio on Nano-Mechanical Properties of Tantalum Nitride Thin Film, J. Alloys Compd., 2017, 719, p 63–70. https://doi.org/10.1016/j.jallcom.2017.05.159

    Article  CAS  Google Scholar 

  16. J. Corona-Gomez, T.A. Jack, R. Feng, and Q. Yang, Wear and Corrosion Characteristics of Nano-Crystalline Tantalum Nitride Coatings Deposited on CoCrMo Alloy for Hip Joint Applications, Mater Charact, 2021, 182, p 111516. https://doi.org/10.1016/j.matchar.2021.111516

    Article  CAS  Google Scholar 

  17. K.Y. Liu, J.W. Lee, and F.B. Wu, Fabrication and Tribological Behavior of Sputtering TaN Coatings, Surf. Coat. Technol., 2014, 259, p 123–128. https://doi.org/10.1016/j.surfcoat.2014.03.024

    Article  CAS  Google Scholar 

  18. H.L. Huang, Y.Y. Chang, M.C. Lai, C.R. Lin, C.H. Lai, and T.M. Shieh, Antibacterial TaN-Ag Coatings on Titanium Dental Implants, Surf. Coat. Technol., 2010, 205(5), p 1636–1641. https://doi.org/10.1016/j.surfcoat.2010.07.096

    Article  CAS  Google Scholar 

  19. C. Zhao, H. Wu, P. Hou, J. Ni, P. Han, and X. Zhang, Enhanced Corrosion Resistance and Antibacterial Property of Zn Doped DCPD Coating on Biodegradable Mg, Mater. Lett., 2016, 180, p 42–46. https://doi.org/10.1016/j.matlet.2016.04.035

    Article  CAS  Google Scholar 

  20. H. Wang, B. Tang, X. Li, and Y. Ma, Antibacterial Properties and Corrosion Resistance of Nitrogen-doped TiO2 Coatings on Stainless Steel, J. Mater. Sci. Technol., 2011, 27(4), p 309–316. https://doi.org/10.1016/S1005-0302(11)60067-4

    Article  Google Scholar 

  21. P. Ren, X. Yang, S. Zhang, J. Qiu, Y. Li, L. Han, J. Zhang, and M. Wen, Enhanced Self-Lubricating and Antibacterial Activity by Building Hard-yet-Tough Ta-Ag-N films on Ti-6Al-4V, Surf. Coat. Technol., 2020, 403, p 126423. https://doi.org/10.1016/j.surfcoat.2020.126423

    Article  CAS  Google Scholar 

  22. J.H. Hsieh, T.H. Yeh, C. Li, S.Y. Chang, C.H. Chiu, and C.T. Huang, Mechanical Properties and Antibacterial Behaviors of TaN-(Ag, Cu) Nanocomposite Thin Films After Annealing, Surf. Coat. Technol., 2013, 228(SUPPL.1), p 116–119. https://doi.org/10.1016/j.surfcoat.2012.07.022

    Article  CAS  Google Scholar 

  23. L. Swiatek et al., Multi-Doped Diamond Like-Carbon Coatings (DLC-Si/Ag) for Biomedical Applications Fabricated using the Modified Chemical Vapour Deposition Method, Diam. Relat. Mater., 2016, 67, p 54–62. https://doi.org/10.1016/j.diamond.2016.03.005

    Article  CAS  Google Scholar 

  24. M. Ren, H.L. Yu, L.N. Zhu, H.Q. Li, H.D. Wang, Z.G. Xing, and B.S. Xu, Microstructure, Mechanical Properties and Tribological Behaviors of TiAlN-Ag Composite Coatings by Pulsed Magnetron Sputtering Method, Surf. Coat. Technol., 2022, 436, p 128286. https://doi.org/10.1016/j.surfcoat.2022.128286

    Article  CAS  Google Scholar 

  25. ASTM International, ASTM G99-17, Standard Test Method for Wear Testing with a Pin-On-Disk Apparatus Annual Book of ASTM Standards. (2017). https://doi.org/10.1520/G0099-17

  26. S.H. Mukhtar, M.F. Wani, R. Sehgal, and M.D. Sharma, Nano-Mechanical and Nano-Tribological Characterisation of Self-Lubricating MoS2 Nano-Structured Coating for Space Applications, Tribol. Int., 2023, 178, p 108017. https://doi.org/10.1016/j.triboint.2022.108017

    Article  CAS  Google Scholar 

  27. S.M. Wani, B. Ahmad, and S.S. Saleem, Nano-Mechanical and Nano-Tribological Characterization of Ni-Co-BN Nano-Composite Coating for Bearing Applications, Tribol. Int., 2023, 180, p 108281. https://doi.org/10.1016/j.triboint.2023.108281

    Article  CAS  Google Scholar 

  28. H. Ju, L. Yu, D. Yu, I. Asempah, and J. Xu, Microstructure, Mechanical and Trobological Properties of TiN-Ag Films Deposited by Reactive Magnetron Sputtering, Vacuum, 2017, 141, p 82–88. https://doi.org/10.1016/j.vacuum.2017.03.026

    Article  CAS  Google Scholar 

  29. A.L. Patterson, The Scherrer Formula for X-Ray Particle Size Determination, Phys. Rev., 1939, 56(10), p 978–982. https://doi.org/10.1103/PhysRev.56.978

    Article  CAS  Google Scholar 

  30. F. Şenaslan, M. Taşdemir, A. Çelik, and Y.B. Bozkurt, Enhanced Wear Resistance and Surface Properties of Oxide Film Coating on Biocompatible Ti45Nb Alloy by Anodization Method, Surf. Coat. Technol., 2023, 469, p 129797. https://doi.org/10.1016/j.surfcoat.2023.129797

    Article  CAS  Google Scholar 

  31. W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus using Load And Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7(6), p 1564–1583. https://doi.org/10.1557/JMR.1992.1564

    Article  CAS  Google Scholar 

  32. Z. Mei et al., Determination of Hardness and Fracture Toughness of Y-TZP Manufactured by Digital Light Processing through the Indentation Technique, Biomed. Res. Int., 2021 https://doi.org/10.1155/2021/6612840

    Article  PubMed  PubMed Central  Google Scholar 

  33. V.S. Kathavate, B. Praveen Kumar, I. Singh, and K. Eswar Prasad, Analysis of Indentation Size Effect (ISE) in Nanoindentation Hardness in Polycrystalline PMN-PT Piezoceramics with Different Domain Configurations, Ceram. Int., 2021, 47(9), p 11870–11877. https://doi.org/10.1016/j.ceramint.2021.01.027

    Article  CAS  Google Scholar 

  34. S.J. Bull, T.F. Page and E.H. Yoffe, An Explanation of the Indentation Size Effect in Ceramics, Philos. Mag. Lett., 1989, 59(6), p 281–288. https://doi.org/10.1080/09500838908206356

    Article  CAS  Google Scholar 

  35. B.D. Beake, The Influence of the H/E Ratio on Wear Resistance of Coating Systems—Insights from Small-Scale Testing, Surf. Coat. Technol., 2022, 442, p 128272. https://doi.org/10.1016/j.surfcoat.2022.128272

    Article  CAS  Google Scholar 

  36. R. Akhter, Z. Zhou, Z. Xie, and P. Munroe, Harmonizing Mechanical Responses of Nanostructured CrN Coatings via Ni Additions, Appl. Surf. Sci., 2021, 538, p 147987. https://doi.org/10.1016/j.apsusc.2020.147987

    Article  CAS  Google Scholar 

  37. M. Barletta, V. Tagliaferri, A. Gisario, and S. Venettacci, Progressive and Constant Load Scratch Testing of Single- and Multi-Layered Composite Coatings, Tribol. Int., 2013, 64, p 39–52. https://doi.org/10.1016/j.triboint.2013.03.002

    Article  CAS  Google Scholar 

  38. G. Melnikova et al., Nanomechanical and Nanotribological Properties of Nanostructured Coatings of Tantalum and its Compounds on Steel Substrates, Nanomaterials, 2021, 11(9), p 2407. https://doi.org/10.3390/nano11092407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. C.D. Rivera-Tello et al., Micro and Macro-Tribology Behavior of a Hierarchical Architecture of a Multilayer TaN/Ta Hard Coating, Coatings, 2020, 10(3), p 263. https://doi.org/10.3390/coatings10030263

    Article  CAS  Google Scholar 

  40. S.K. Singh, S. Chattopadhyaya, A. Pramanik, and S. Kumar, Wear Behavior of Chromium Nitride Coating in Dry Condition at lower Sliding Velocity and Load, Int. J. Adv. Manuf. Technol., 2018, 96(5–8), p 1665–1675. https://doi.org/10.1007/s00170-017-0796-x

    Article  Google Scholar 

  41. J.F. Archard, Contact and Rubbing of Flat Surfaces, J. Appl. Phys., 2004, 24(8), p 981–988. https://doi.org/10.1063/1.1721448

    Article  Google Scholar 

  42. S. Kumar, R. Sehgal, M.F. Wani, and M.D. Sharma, Friction and Wear Properties of Core-Shell (CI is a Core & GO is a Shell) Particles Based Magnetorheological Fluid under Steel on Steel Point Contacts, J. Ind. Eng. Chem., 2022, 118, p 446–457. https://doi.org/10.1016/j.jiec.2022.11.028

    Article  CAS  Google Scholar 

  43. J. Bansal et al., Performance Analysis of Anomalous Photocatalytic Activity of Cr-doped TiO2 Nanoparticles [Cr(x)TiO2(1–x)], Appl. Phys. A Mater. Sci. Process., 2020, 126(5), p 1–11. https://doi.org/10.1007/s00339-020-03536-z

    Article  CAS  Google Scholar 

  44. N. Hossain et al., Structural and Physical Properties of NbO2 and Nb2O5 Thin Films Prepared by Magnetron Sputtering, J. Mater. Sci. Mater. Electron., 2019, 30(10), p 9822–9835. https://doi.org/10.1007/s10854-019-01319-8

    Article  CAS  Google Scholar 

  45. G. Welsch and A.I. Kahveci, Oxidation Behavior of Titanium Aluminide Alloys, Oxidation of High-Temperature Intermetallics. T. Grobstein, J. Doychak Ed., Springer, Berlin, 1988, p 207–218

    Google Scholar 

  46. M.O. Alam and A.S.M.A. Haseeb, Response of Ti-6Al-4V and Ti-24Al-11Nb Alloys to Dry Sliding Wear against Hardened Steel, Tribol. Int., 2002, 35(6), p 357–362. https://doi.org/10.1016/S0301-679X(02)00015-4

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors acknowledge the facilities provided by CRFC, National Institute of Technology Srinagar (J&K), India, for experimental work, and the technical help received from the staff, and the guidance received from others associated with the CRFC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Sehgal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V., Sharma, R.K. & Sehgal, R. A Comprehensive Investigation on Nanomechanical, Scratch, and Tribological Characteristics of TaN-Ag Nanocomposite Coating on Ti6Al7Nb Alloy. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09408-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09408-4

Keywords

Navigation