Skip to main content

Advertisement

Log in

Microstructure Characteristics and Mechanical Properties of γ-TiAl/Steel Joints with Different Laser Pulse Currents

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Dissimilar welding of γ-TiAl alloy and steel is applied by laser with different laser pulse current (80A, 85A and 90A). The dissimilar laser weldability of γ-TiAl alloy and steel is investigated on laser welding without and with V/Cu filler metals. The results reveal that the brittle FeAl, Fe2Ti, Fe2Al5, Ti3Al and TiC intermetallic compounds (IMCs) and weld cracks are found in the joint without filler metals, causing the poor laser weldability. Adding V/Cu filler metals can dramatically improve the weldability of γ-TiAl alloy and steel, and detailed effects of pulse current on microstructural characterization and mechanical properties of the joints are investigated. An incomplete penetration joint is obtained when 80A is used. With the pulse current increases to 85A and 90A, full- penetration joints are obtained, and Cu-based solid solution, (Fe,V) solid solutions and less amount of AlCu2Ti IMCs are formed in the weld, but Fe2Ti is only found in the weld with 90A. The maximum joint tensile strength (297 MPa) is obtained at a pulse current of 85A, and the joints fracture at the γ-TiAl/weld interface zone where AlCuTi and AlCu2Ti IMCs are generated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. K. Kothari, R. Radhakrishnan, and N.M. Wereley, Advances in Gamma Titanium Aluminides and Their Manufacturing Techniques, Prog. Aerosp. Sci., 2012, 55, p 1–16. https://doi.org/10.1016/j.paerosci.2012.04.001

    Article  Google Scholar 

  2. S.J. Qu, S.Q. Tang, A.H. Feng, C. Feng, J. Shen, and D.L. Chen, Microstructural Evolution and High-Temperature Oxidation Mechanisms of a Titanium Aluminide Based Alloy, Acta Mater., 2018, 148, p 300–310. https://doi.org/10.1016/j.actamat.2018.02.013

    Article  CAS  Google Scholar 

  3. Q. Hu, Q. Wang, X.L. Wu, L.C. Zeng, and X.W. Liu, Microstructure Evolution and Mechanical Properties of a TiAl Alloy Modified by High-Entropy Alloy Additions, J. Mater. Eng. Perform., 2023, 32, p 9121–9136. https://doi.org/10.1007/s11665-022-07782-5

    Article  CAS  Google Scholar 

  4. X. Liu, Y. Han, S. Yan, H. Chen, and X. Ran, Improved Compressive Properties of TiAl Alloy with Ultrafine/Fine Grains Prepared by High-Energy Ball Milling and Hot-Pressing Sintering, J. Mater. Eng. Perform. Perform., 2023, 32, p 4817–4822. https://doi.org/10.1007/s11665-022-07449-1

    Article  CAS  Google Scholar 

  5. D.H. Zhang, D.P. Shi, F. Wang, D.S. Qian, Y.B. Zhou, J.J. Fu, M. Chen, D.S. Qiu, and S.F. Jiang, Electromagnetic Shocking Induced Fatigue Improvement via Tailoring the α-Grain Boundary in Metastable β Titanium Alloy Bolts, J. Alloys Comp., 2023, 966, p 171536. https://doi.org/10.1016/j.jallcom.2023.171536

    Article  CAS  Google Scholar 

  6. G. Chen, Y.B. Peng, G. Zheng, Z.X. Qi, M.Z. Wang, H.C. Yu, C.L. Dong, and C.T. Liu, Polysynthetic Twinned TiAl Single Crystals for High-Temperature Applications, Nat. Mater., 2016, 15, p 876–882. https://doi.org/10.1038/NMAT4677

    Article  CAS  PubMed  Google Scholar 

  7. T.M. Pollock, Alloy Design for Aircraft Engines, Nat. Mater., 2016, 15, p 809–815. https://doi.org/10.1038/nmat4709

    Article  CAS  PubMed  Google Scholar 

  8. Y.J. Hao, J.X. Liu, S.K. Li, J.C. Li, X.Z. Liu, and X.Y. Feng, Effects of Nano-Twinning on the Deformation and Mechanical Behaviours of TiAl Alloys with Distinct Microstructure at Elevated Loading Temperatures, Mater. Sci. Eng. A, 2017, 705, p 210–218. https://doi.org/10.1016/j.msea.2017.08.077

    Article  CAS  Google Scholar 

  9. T. Noda, T. Shimizu, M. Okabe, and T. Iikubo, Joining of TiAl and Steels by Induction Brazing, Mater. Sci. Eng. A, 1997, 239–240, p 613–618.

    Article  Google Scholar 

  10. P. He, J.C. Feng, and W. Xu, Mechanical Property of Induction Brazing TiAl-Based Intermetallics to Steel 35CrMo Using AgCuTi Filler Metal, Mater. Sci. Eng. A, 2006, 418, p 45–52. https://doi.org/10.1016/j.msea.2005.11.005

    Article  CAS  Google Scholar 

  11. P. He, J.C. Feng, and W. Xu, Microstructure and Kinetics of Induction Brazing TiAl-Based Intermetallics to Steel 35CrMo Using AgCuTi Filler Metal, Mater. Sci. Eng. A, 2006, 418, p 53–60. https://doi.org/10.1016/j.msea.2005.11.003

    Article  CAS  Google Scholar 

  12. P. He, J.C. Feng, and W. Xu, Interfacial Microstructure of Induction Brazed Joints of TiAl-Based Intermetallics to Steel 35CrMo with AgCuNiLi Filler, Mater. Sci. Eng. A, 2005, 408, p 195–201. https://doi.org/10.1016/j.msea.2005.08.009

    Article  CAS  Google Scholar 

  13. P. He, J.C. Feng, and W. Xu, Mechanical Property and Fracture Characteristic of Induction Brazed Joints of TiAl-Based Intermetallics to Steel 35CrMo with Ag-Cu-Ni-Li Filler, Mater. Sci. Eng. A, 2005, 412, p 214–221. https://doi.org/10.1016/j.msea.2005.08.147

    Article  CAS  Google Scholar 

  14. Y.L. Li, P. He, and J.C. Feng, Interface Structure and Mechanical Properties of the TiAl/42CrMo Steel Joint Vacuum Brazed with Ag–Cu/Ti/Ag–Cu Filler Metal, Scr. Mater., 2006, 55, p 171–174. https://doi.org/10.1016/j.scriptamat.2006.03.055

    Article  CAS  Google Scholar 

  15. B. Chen, H.P. Xiong, W. Mao, Y.Y. Chen, L. Ye, and X. Wu, Microstructure and Bonding Mechanism of TiAl/42CrMo Steel Joint Using Ti-15Cu-15Ni filler Metal, J. Aeronaut. Mater., 2006, 26, p 17–318. (in Chinese)

    Google Scholar 

  16. H.G. Dong, Z.L. Yang, G.S. Yang, and C. Dong, Vacuum Brazing of TiAl Alloy to 40Cr Steel with Ti60Ni22Cu10Zr8 Alloy Foil as Filler Metal, Mater. Sci. Eng. A, 2013, 561, p 252–258. https://doi.org/10.1016/j.msea.2012.11.014

    Article  CAS  Google Scholar 

  17. P. He, J.C. Feng, B.G. Zhang, and Y.Y. Qian, Microstructure and Strength of Diffusion-Bonded Joints of TiAl Base Alloy to Steel, Mater. Charact., 2002, 48, p 401–406. https://doi.org/10.1016/S1044-5803(02)00319-4

    Article  CAS  Google Scholar 

  18. P. He, J.C. Feng, B.G. Zhang, and Y.Y. Qian, A New Technology for Diffusion Bonding Intermetallic TiAl to Steel with Composite Barrier Layers, Mater. Charact., 2003, 50, p 87–92. https://doi.org/10.1016/S1044-5803(03)00122-0

    Article  CAS  Google Scholar 

  19. S. Simoes, F. Viana, A.S. Ramos, M.T. Vieira, and M.F. Vieira, Reaction-Assisted Diffusion Bonding of TiAl Alloy to Steel, Mater. Chem. Phys., 2016, 171, p 73–82. https://doi.org/10.1016/j.matchemphys.2015.11.032

    Article  CAS  Google Scholar 

  20. S. Simões, A.S. Ramos, F. Viana, M.T. Vieira, and M.F. Vieira, Joining of TiAl to Steel by Diffusion Bonding with Ni/Ti Reactive Multilayers, Metals, 2016, 96, p 1–11. https://doi.org/10.3390/met6050096

    Article  Google Scholar 

  21. H.G. Dong, L.Z. Yu, H.M. Gao, D.W. Deng, W.L. Zhou, and C. Dong, Microstructure and Mechanical Properties of Friction Welds Between TiAl Alloy and 40Cr Steel Rods, Trans. Nonferrous Met. Soc. China, 2014, 24, p 3126–3133. https://doi.org/10.1016/S1003-6326(14)63451-8

    Article  CAS  Google Scholar 

  22. W.-B. Lee, Y.-J. Kim, and S.-B. Jung, Effects of Copper Insert Layer on the Properties of Friction Welded Joints Between TiAl and AISI 4140 Structural Steel, Intermetallics, 2004, 12, p 671–678. https://doi.org/10.1016/j.intermet.2004.02.004

    Article  CAS  Google Scholar 

  23. Z.Y. Ye, J.N. Li, L.Q. Liu, F.K. Ma, B. Zhao, and X.L. Wang, Microstructure and Wear Performance Enhancement of Carbon Nanotubes Reinforced Composite Coatings Fabricated by Laser Cladding on Titanium Alloy, Opt. Laser Tech., 2021, 139, p 106957. https://doi.org/10.1016/j.optlastec.2021.106957

    Article  CAS  Google Scholar 

  24. H.B. Xia, B.Y. Yang, J.H. Su, Y.F. Liu, X. Su, C. Wang, X. Qiang, T. Wu, and C.W. Tan, Improvement of Laser Welded TC4/CFRTP Joint Strength by Combination of Surface Modification of MAO and Laser Texturing, Thin Wall. Struct., 2024, 196, p 111409. https://doi.org/10.1016/j.tws.2023.111409

    Article  Google Scholar 

  25. H.B. Xi, B.Y. Yang, Y.D. Han, L.Y. Xu, C.W. Tan, L.Q. Li, H.Y. Li, X.Y. Zhao, K.P. Zhang, J. Peng, P.H. Geng, and N.S. Ma, Toward Understanding the Fractured Mechanism in Laser Welded-Brazed Al/Steel Interface by In–Situ SEM Tensile Observation, J. Mater. Process. Tech., 2024 https://doi.org/10.1016/j.jmatprotec.2024.118294

    Article  Google Scholar 

  26. J.P. Oliveira, B. Panton, Z. Zeng, C.M. Andrei, Y. Zhou, and R.M. Miranda, Laser Joining of NiTi to Ti6Al4V Using a NIOBIUM INTERLAYER, Acta Mater., 2016, 105, p 9–15. https://doi.org/10.1016/j.actamat.2015.12.021

    Article  CAS  Google Scholar 

  27. J.L. Xue, W. Guo, J. Yang, M.S. Xia, G. Zhao, C.W. Tan, Z.D. Wan, J.X. Chi, and H.Q. Zhang, In-Situ Observation of Microcrack Initiation and Damage Nucleation Modes on the HAZ of Laser-Welded DP1180 Joint, J. Mater. Sci. Tech., 2023, 148, p 138–149. https://doi.org/10.1016/j.jmst.2023.01.001

    Article  CAS  Google Scholar 

  28. M. Wiegand, N. Sommer, L. Marks, and S. Böhm, High-Strength Dissimilar Welds Between a Niti Shape Memory Alloy and Titanium Obtained by Intermixing Niobium Using Pulsed Laser Beam Welding, Metall. Mater. Trans. A, 2024, 55, p 278–290. https://doi.org/10.1007/s11661-023-07248-w

    Article  CAS  Google Scholar 

  29. Z.Y. Zhu, Y.L. Liu, G.Q. Gou, W. Gao, and J. Chen, Effect of Heat Input on Interfacial Characterization of the Butter Joint of Hot-Rolling CP-Ti/Q235 Bimetallic Sheets by Laser+CMTZ, Sci. Rep., 2021, 11, p 10020. https://doi.org/10.1038/s41598-021-89343-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Y.H. Chen, S.W. Sun, T.M. Zhang, X.W. Zhou, and S.H. Li, Effects of Post-Weld Heat Treatment on the Microstructure and Mechanical Properties of Laser-Welded NiTi/304SS Joint with Ni Filler, Mater. Sci. Eng. A, 2020, 771, p 138545. https://doi.org/10.1016/j.msea.2019.138545

    Article  CAS  Google Scholar 

  31. T.B. Massalski, Binary alloy phase diagram, ASM international, Metal Park, 1990.

    Google Scholar 

  32. D.S. Zhao, J.C. Yan, C.W. Wang, Y. Wang, and S.Q. Yang, Interfacial Structure and Mechanical Properties of Hot Rool Bonded Joints Between Titanium Alloy and Stainless Steel Using Copper Interlayer, Sci. Technol. Weld. Join., 2008, 13, p 765–768. https://doi.org/10.1179/136217108X329304

    Article  CAS  Google Scholar 

  33. Q. Sun, J.Y. Chen, X.N. Wang, F. Gu, C.W. Tan, A. Shamsolhodaei, L.N. Sun, and Y.N. Zhou, Study on Weld Formation and Segregation Mechanism for Dissimilar Pulse Laser Welding of NiTi and Cu Wires, Opt. Laser Tech., 2021, 140, p 107071. https://doi.org/10.1016/j.optlastec.2021.107071

    Article  CAS  Google Scholar 

  34. Z. Zeng, B. Panton, J.P. Oliveira, A. Han, and Y.N. Zhou, Dissimilar Laser Welding of NiTi Shape Memory Alloy and Copper, Smart Mater. Struct., 2015, 24, p 125036. https://doi.org/10.1088/0964-1726/24/12/125036

    Article  CAS  Google Scholar 

  35. X.L. Cai, H.M. Li, B.K. Ji, M.D. Li, X.P. Yao, Y. Wang, and D.Q. Sun, Effect of Single Alloying Element (Ti, Nb, V, Cu) on Microstructure and Mechanical Properties of Dissimilar TiAl/Ni-Based Superalloy Laser Joints, Opt. Laser Tech., 2022, 146, p 107575. https://doi.org/10.1016/j.optlastec.2021.107575

    Article  CAS  Google Scholar 

  36. J.L. Xie, Y.H. Chen, L.M. Yin, T.M. Zhang, S.L. Wang, and L.T. Wang, Microstructure and Mechanical Properties of Ultrasonic Spot Welding TiNi/Ti6Al4V Dissimilar Materials Using Pure Al Coating, J. Manuf. Process., 2021, 64, p 473–480. https://doi.org/10.1016/j.jmapro.2021.02.009

    Article  Google Scholar 

  37. Y.H. Chen, Y.Q. Mao, W.W. Lu, and P. He, Investigation of Welding Crack in Micro Laser Welded NiTiNb Shape Memory Alloy and Ti6Al4V Alloy Dissimilar Metals Joints, Opt. Laser Tech., 2017, 91, p 197–202. https://doi.org/10.1016/j.optlastec.2016.12.028

    Article  CAS  Google Scholar 

  38. P. Villars, A. Prince, and H. Okamoto, Hankbook of ternary alloy phase diagrams, ASM International, Materials Park, 1995.

    Google Scholar 

  39. V. Raghavan, Al-Cu-Ti (Aluminum-Copper-Titanium), J. Phase Equilib. Diffus., 2006, 27, p 156–157. https://doi.org/10.1361/154770306X97245

    Article  CAS  Google Scholar 

  40. G. Wang, P. Wu, W. Wang, D.D. Zhu, C.W. Tan, Y.S. Su, X.Y. Shi, and W. Cao, Brazing Ti-48Al-2Nb-2Cr Alloys with Cu-Based Amorphous Alloy Filler, Appl. Sci., 2018, 8, p 920. https://doi.org/10.3390/app8060920

    Article  CAS  Google Scholar 

  41. X.P. Liu, L.X. Zhang, Z. Sun, and J.C. Feng, Microstructure and Mechanical Properties of Transparent Alumina and TiAl Alloy Joints Brazed Using Ag-Cu-Ti Filler Metal, Vacuum, 2018, 151, p 80–89. https://doi.org/10.1016/j.vacuum.2018.01.019

    Article  CAS  Google Scholar 

  42. R.K. Shiue, S.K. Wu, and S.Y. Chen, Infrared Brazing of TiAl Intermetallic Using Bag-8 Braze Alloy, Acta Mater., 2003, 51, p 1991–2004. https://doi.org/10.1016/S1359-6454(02)00606-7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the General Topics for the 2023 Year of the 14th Five-Year Plan for Education and Science in Jilin Province (GH23818), the 2023 Provincial Innovation Project (No. 202311437031), the Metal Material Advanced Welding Technology Innovation Team of Jilin Province (20230508039RC) and the Education Department of Jilin Province (JJKH20180126KJ).

Author information

Authors and Affiliations

Authors

Contributions

QL performed the experiment and date analyses and wrote original draft manuscript. XC contributed to the conception of the study, revision of the manuscript and funding acquisition. XX contributed to the manuscript structure arrangement and project administration. HM helped prepare the manuscript and data chart processing of the manuscript. HL contributed significantly to analyses. DS contributed to microstructure analysis and project administration.

Corresponding authors

Correspondence to Xiaolong Cai or Hongmei Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Cai, X., Xu, X. et al. Microstructure Characteristics and Mechanical Properties of γ-TiAl/Steel Joints with Different Laser Pulse Currents. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09383-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09383-w

Keywords

Navigation