Skip to main content
Log in

The Impact of Hybrid Flame Retardant Compositions on the Performance of Foamed Flexible Polyurethane/Ground Tire Rubber Composites

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Current sustainability-oriented trends affect polyurethane (PU) materials and stimulate the incorporation of recycled or waste-based materials as fillers. Ground tire rubber (GTR) poses as an auspicious candidate due to the excellent performance of car tires. Despite the benefits related to the mechanical performance, it contributes to the increasing flammability of the resulting composites. Herein, presented work assessed the impact of hybrid flame retardant (FR) combinations of ammonium polyphosphate (APP) or melamine cyanurate (MC) with organophosphorus compounds on the performance of foamed flexible PU/GTR composites. Such works are of vital importance, because matching to the needs of material with the mode of action of particular FRs is quite challenging. Except for the flammability reduction, they also affect structure and performance of composites. Fire resistance was enhanced for all applied FRs compositions; however, APP was found more effective than MC due to the efficient formation of protective char layer. Moreover, introduction of MC induced heterogeneity of cellular structure and excessive stiffening of PU structure, which increased its friability and cells’ coalescence, deteriorating thermal insulation performance and damping ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data were produced as a result of studies carried out in the university laboratory. Those who want to get information should contact the corresponding author.

References

  1. S. Hu, Y. Zhang, Z. Yang, D. Yan, and Y. Jiang, Challenges and Opportunities for Carbon Neutrality in China’s Building Sector—Modelling and Data, Build. Simul., 2022, 15(11), p 1899–1921.

    Article  Google Scholar 

  2. S. Giorgi, M. Lavagna, K. Wang, M. Osmani, G. Liu, and A. Campioli, Drivers and Barriers Towards Circular Economy in the Building Sector: Stakeholder Interviews and Analysis of Five European Countries Policies and Practices, J. Clean. Prod., 2022, 336, 130395.

    Article  Google Scholar 

  3. J. Smoleń, K. Olszowska, and M. Godzierz, Composites of Rigid Polyurethane Foam and Shredded Car Window Glass Particles–Structure and Mechanical Properties, Compos. Theory Pract., 2021, 21(4), p 135–140.

    Google Scholar 

  4. T. Małysa, K. Nowacki, and J. Wieczorek, Assessment of Sound Absorbing Properties of Polyurethane Sandwich System, Compos. Theory Pract., 2016, 16(4), p 244–248.

    Google Scholar 

  5. M. Kozioł, K. Nowacki, J. Wieczorek, and T. Małysa, Evaluation of Mechanical Properties of Polymer Sandwich Systems Used for Noise Reduction Purposes, Compos. Theory Pract., 2015, 15(3), p 158–162.

    Google Scholar 

  6. J. Wang and B. Du, Sound Insulation Performance of Foam Rubber Damping Pad and Polyurethane Foam Board in Floating Floors, Exp. Tech., 2023, 47(4), p 839–850.

    Article  Google Scholar 

  7. H.M.C.C. Somarathna, S.N. Raman, D. Mohotti, A.A. Mutalib, and K.H. Badri, The Use of Polyurethane for Structural and Infrastructural Engineering Applications: A State-of-the-Art Review, Constr. Build. Mater., 2018, 190, p 995–1014.

    Article  CAS  Google Scholar 

  8. R. Gómez-Rojo, L. Alameda, Á. Rodríguez, V. Calderón, and S. Gutiérrez-González, Characterization of Polyurethane Foam Waste for Reuse in Eco-Efficient Building Materials, Polymers (Basel), 2019, 11(2), p 359.

    Article  PubMed  PubMed Central  Google Scholar 

  9. M. Ates, S. Karadag, A.A. Eker, and B. Eker, Polyurethane Foam Materials and Their Industrial Applications, Polym. Int., 2022, 71(10), p 1157–1163.

    Article  CAS  Google Scholar 

  10. S. Schiavoni, F. Dalessandro, F. Bianchi, and F. Asdrubali, Insulation Materials for the Building Sector: A Review and Comparative Analysis, Renew. Sustain. Energy Rev., 2016, 62, p 988–1011.

    Article  Google Scholar 

  11. European Comission, “Communication From The Commission To The European Parliament, The Council, The European Economic And Social Committee of the Regions. A New Circular Economy Action Plan For a Cleaner and More Competitive Europe,” https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1583933814386&uri=COM:2020:98:FIN, (Brussels), 2020.

  12. European Comission, “State of the Union: Commission Raises Climate Ambition and Proposes 55% Cut in Emissions by 2030,” https://ec.europa.eu/commission/presscorner/detail/en/ip_20_1599, 2020.

  13. European Comission, “The European Green Deal Sets out How to Make Europe the First Climate-Neutral Continent by 2050, Boosting the Economy, Improving People’s Health and Quality of Life, Caring for Nature, and Leaving No One Behind,” https://ec.europa.eu/commission/presscorner/detail/en/ip_19_6691, (Brussels), 2019.

  14. L. Zhang, Production of Bricks from Waste Materials—A Review, Constr. Build. Mater., 2013, 47, p 643–655.

    Article  Google Scholar 

  15. E.P. Aigbomian and M. Fan, Development of Wood-Crete Building Materials from Sawdust and Waste Paper, Constr. Build. Mater., 2013, 40, p 361–366.

    Article  Google Scholar 

  16. A. Joseph, R. Snellings, P. Van den Heede, S. Matthys, and N. De Belie, The Use of Municipal Solid Waste Incineration Ash in Various Building Materials: A Belgian Point of View, Materials, 2018, 11(1), p 141.

    Article  PubMed  PubMed Central  Google Scholar 

  17. A. Soni, P.K. Das, A.W. Hashmi, M. Yusuf, H. Kamyab, and S. Chelliapan, Challenges and Opportunities of Utilizing Municipal Solid Waste as Alternative Building Materials for Sustainable Development Goals: A Review, Sustain. Chem. Pharm., 2022, 27, 100706.

    Article  CAS  Google Scholar 

  18. S. Gutiérrez-González, J. Gadea, A. Rodríguez, C. Junco, and V. Calderón, Lightweight Plaster Materials with Enhanced Thermal Properties Made with Polyurethane Foam Wastes, Constr. Build. Mater., 2012, 28(1), p 653–658.

    Article  Google Scholar 

  19. A.E. Tiuc, O. Nemeş, H. Vermeşan, and A.C. Toma, New Sound Absorbent Composite Materials based on Sawdust and Polyurethane Foam, Compos. B Eng., 2019, 165, p 120–130.

    Article  CAS  Google Scholar 

  20. C. Yang, Z. Zhuang, and Z. Yang, Pulverized Polyurethane Foam Particles Reinforced Rigid Polyurethane Foam and Phenolic Foam, J Appl Polym Sci, 2014, 131(1).

  21. Š Hýsek, P. Neuberger, A. Sikora, O. Schönfelder, and G. Ditommaso, Waste Utilization: Insulation Panel from Recycled Polyurethane Particles and Wheat Husks, Materials, 2019, 12(19), p 3075.

    Article  PubMed  PubMed Central  Google Scholar 

  22. M.G. El-Meligy, S.H. Mohamed, and R.M. Mahani, Study Mechanical, Swelling and Dielectric Properties of Prehydrolysed Banana Fiber—Waste Polyurethane Foam Composites, Carbohydr. Polym., 2010, 80(2), p 366–372.

    Article  CAS  Google Scholar 

  23. S. Członka, M.F. Bertino, K. Strzelec, A. Strąkowska, and M. Masłowski, Rigid Polyurethane Foams Reinforced with Solid Waste Generated in Leather Industry, Polym. Test., 2018, 69, p 225–237.

    Article  Google Scholar 

  24. A.-E. Tiuc, H. Vermeşan, T. Gabor, and O. Vasile, Improved Sound Absorption Properties of Polyurethane Foam Mixed with Textile Waste, Energy Procedia, 2016, 85, p 559–565.

    Article  CAS  Google Scholar 

  25. M. Barczewski, M. Kurańska, K. Sałasińska, S. Michałowski, A. Prociak, K. Uram, and K. Lewandowski, Rigid Polyurethane Foams Modified with Thermoset Polyester-Glass Fiber Composite Waste, Polym. Test., 2020, 81, 106190.

    Article  CAS  Google Scholar 

  26. A.G. Cachaço, M.D. Afonso, and M.L. Pinto, New Applications for Foam Composites of Polyurethane and Recycled Rubber, J. Appl. Polym. Sci., 2013, 129(5), p 2873–2881.

    Article  Google Scholar 

  27. P. Wiśniewska, S. Wang, and K. Formela, Waste Tire Rubber Devulcanization Technologies: State-of-the-Art Limitations and Future Perspectives, Waste Manag.Manag., 2022, 150, p 174–184.

    Article  Google Scholar 

  28. S. Moghaddamzadeh and D. Rodrigue, Rheological Characterization of Polyethylene/Polyester Recycled Tire Fibers/Ground Tire Rubber Composites, J. Appl. Polym. Sci., 2018, 135(34), p 46563.

    Article  Google Scholar 

  29. E.H. Hernández, J.F.H. Gámez, L.F. Cepeda, E.J.C. Muñoz, F.S. Corral, S.G.S. Rosales, G.N. Velázquez, P.G. Morones, and D.I.S. Martínez, Sulfuric Acid Treatment of Ground Tire Rubber and Its Effect on the Mechanical and Thermal Properties of Polypropylene Composites, J Appl Polym Sci, 2017, 134(21).

  30. L. Kiss, D.Á. Simon, R. Petrény, D. Kocsis, T. Bárány, and L. Mészáros, Ground Tire Rubber Filled Low-Density Polyethylene: The Effect of Particle Size, Adv. Ind. Eng. Polym. Res., 2022, 5(1), p 12–17.

    CAS  Google Scholar 

  31. A. Toncheva, L. Brison, P. Dubois, and F. Laoutid, Recycled Tire Rubber in Additive Manufacturing: Selective Laser Sintering for Polymer-Ground Rubber Composites, Appl. Sci., 2021, 11(18), p 8778.

    Article  CAS  Google Scholar 

  32. M. Marín-Genescà, J. García-Amorós, R. Mujal-Rosas, L.M. Vidal, J.B. Arroyo, and X.C. Fajula, Ground Tire Rubber Recycling in Applications as Insulators in Polymeric Compounds, According to Spanish UNE Standards, Recycling, 2020, 5(3), p 16.

    Article  Google Scholar 

  33. R.C.V. Fletes, E.O.C. López, P.O. Gudiño, E. Mendizábal, R.G. Núñez, and D. Rodrigue, Ground Tire Rubber/Polyamide 6 Thermoplastic Elastomers Produced by Dry Blending and Compression Molding, Progr. Rubber Plast. Recycl. Technol., 2022, 38(1), p 38–55.

    Article  Google Scholar 

  34. J. Orrit-Prat, R. Mujal-Rosas, A. Rahhali, M. Marin-Genesca, X. Colom-Fajula, and J. Belana-Punseti, Dielectric and Mechanical Characterization of PVC Composites with Ground Tire Rubber, J. Compos. Mater., 2011, 45(11), p 1233–1243.

    Article  CAS  Google Scholar 

  35. M.M. Barbooti, B.H. Musa, Q.A. Salloom, and D. Abdul-Aziz, Preparation and Study of Properties of Polyvinyl Chloride-Scrap Tire Composite for Civil Applications, J. Mater. Environ. Sci., 2018, 9(1), p 285–292.

    CAS  Google Scholar 

  36. Ł Zedler, X. Colom, M.R. Saeb, and K. Formela, Preparation and Characterization of Natural Rubber Composites Highly Filled with Brewers’ Spent Grain/Ground Tire Rubber Hybrid Reinforcement, Compos. B Eng., 2018, 145, p 182–188.

    Article  CAS  Google Scholar 

  37. J. Araujo-Morera, R. Verdugo-Manzanares, S. González, R. Verdejo, M.A. Lopez-Manchado, and M. Hernández Santana, On the Use of Mechano-Chemically Modified Ground Tire Rubber (GTR) as Recycled and Sustainable Filler in Styrene-Butadiene Rubber (SBR) Composites, J. Compos. Sci., 2021, 5(3), p 68.

    Article  CAS  Google Scholar 

  38. A. Fazli and D. Rodrigue, Recycling Waste Tires into Ground Tire Rubber (GTR)/Rubber Compounds: A Review, J. Compos. Sci., 2020, 4(3), p 103.

    Article  CAS  Google Scholar 

  39. S. Sugiman, D. Rizaldi, A. Mulyanto, N. Nurchayati, N. Kaliwantoro, and M. Wijana, Water Absorption and Tensile Properties of Ground Tire Rubber/Epoxy Composites: Effect of Surface Treatment, Plast. Rubber Compos., 2023, 52(4), p 216–226.

    Article  CAS  Google Scholar 

  40. K. Aoudia, S. Azem, N. AïtHocine, M. Gratton, V. Pettarin, and S. Seghar, Recycling of Waste Tire Rubber: Microwave Devulcanization and Incorporation in a Thermoset Resin, Waste Manag., 2017, 60, p 471–481.

    Article  CAS  PubMed  Google Scholar 

  41. T. Kazemi Esfeh, R. Arefinia, O. Moini Jazani, and M. Fallahi, A Novel Epoxy Adhesive with Ground Rubber Tire Powder and Carboxylated Multiwalled Carbon Nanotubes, Polym Compos, 2023.

  42. M. He, K. Gu, Y. Wang, Z. Li, Z. Shen, S. Liu, and J. Wei, Development of High-Performance Thermoplastic Composites Based on Polyurethane and Ground Tire Rubber by in-Situ Synthesis, Resour. Conserv. Recycl., 2021, 173, 105713.

    Article  CAS  Google Scholar 

  43. P. Kosmela, A. Olszewski, Ł. Zedler, P. Burger, A. Piasecki, K. Formela, and A. Hejna, Ground Tire Rubber Filled Flexible Polyurethane Foam—Effect of Waste Rubber Treatment on Composite Performance, Materials, 2021, 14(14).

  44. A. Hejna, A. Olszewski, Ł Zedler, P. Kosmela, and K. Formela, The Impact of Ground Tire Rubber Oxidation with H2O2 and KMnO4 on the Structure and Performance of Flexible Polyurethane/Ground Tire Rubber Composite Foams, Materials, 2021, 14(3), p 499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. A. Hejna, P. Kosmela, A. Olszewski, Ł. Zedler, K. Formela, K. Skórczewska, A. Piasecki, M. Marć, R. Barczewski, and M. Barczewski, Management of Ground Tire Rubber Waste by Incorporation into Polyurethane-Based Composite Foams, Environmental Science and Pollution Research, 2023.

  46. Ł. Piszczyk, A. Hejna, K. Formela, M. Danowska, and M. Strankowski, Effect of Ground Tire Rubber on Structural, Mechanical and Thermal Properties of Flexible Polyurethane Foams, Iranian Polymer Journal (English Edition), 2015, 24(1).

  47. W. Żukowska, P. Kosmela, P. Wojtasz, M. Szczepański, A. Piasecki, R. Barczewski, M. Barczewski, and A. Hejna, Comprehensive Enhancement of Prepolymer-Based Flexible Polyurethane Foams’ Performance by Introduction of Cost-Effective Waste-Based Ground Tire Rubber Particles, Materials, 2022, 15(16), p 5728.

    Article  PubMed  PubMed Central  Google Scholar 

  48. A. Hejna, J. Korol, M. Przybysz-Romatowska, Ł Zedler, B. Chmielnicki, and K. Formela, Waste Tire Rubber as Low-Cost and Environmentally-Friendly Modifier in Thermoset Polymers—A Review, Waste Manage., 2020, 108, p 106–118.

    Article  CAS  Google Scholar 

  49. J.-G. Rosenboom, R. Langer, and G. Traverso, Bioplastics for a Circular Economy, Nat. Rev. Mater., 2022, 7(2), p 117–137.

    Article  PubMed  PubMed Central  Google Scholar 

  50. H. Yang, B. Yu, P. Song, C. Maluk, and H. Wang, Surface-Coating Engineering for Flame Retardant Flexible Polyurethane Foams: A Critical Review, Compos. B Eng., 2019, 176, 107185.

    Article  CAS  Google Scholar 

  51. Z. Yin, J. Lu, X. Yu, P. Jia, G. Tang, X. Zhou, T. Lu, L. Guo, B. Wang, L. Song, and Y. Hu, Construction of a Core-Shell Structure Compound: Ammonium Polyphosphate Wrapped by Rare Earth Compound to Achieve Superior Smoke and Toxic Gases Suppression for Flame Retardant Flexible Polyurethane Foam Composites, Compos. Commun., 2021, 28, 100939.

    Article  Google Scholar 

  52. P. Wiśniewska, N.A. Wójcik, J. Ryl, R. Bogdanowicz, H. Vahabi, K. Formela, and M.R. Saeb, Rubber Wastes Recycling for Developing Advanced Polymer Composites: A Warm Handshake with Sustainability, J. Clean. Prod., 2023, 427, 139010.

    Article  Google Scholar 

  53. J. Ryszkowska, M. Leszczynska, M. Auguscik, A. Bryskiewicz, M. Polka, B. Kukfisz, L. Wierzbicki, J. Aleksandrowicz, L. Szczepkowski, and R. Oliwa, Cores of Composite Structures Made of Semi-Rigid Foams for Use as Protecting Shields for Firefighters, Polimery, 2018, 63(02), p 125–133.

    Article  CAS  Google Scholar 

  54. Ł Zedler, D. Kowalkowska-Zedler, X. Colom, J. Cañavate, M.R. Saeb, and K. Formela, Reactive Sintering of Ground Tire Rubber (GTR) Modified by a Trans-Polyoctenamer Rubber and Curing Additives, Polymers (Basel), 2020, 12(12), p 3018.

    Article  CAS  PubMed  Google Scholar 

  55. Ł Zedler, D. Kowalkowska-Zedler, H. Vahabi, M.R. Saeb, X. Colom, J. Cañavate, S. Wang, and K. Formela, Preliminary Investigation on Auto-Thermal Extrusion of Ground Tire Rubber, Materials, 2019, 12(13), p 2090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. A. Susik, A. Rodak, J. Cañavate, X. Colom, S. Wang, and K. Formela, Processing, Mechanical and Morphological Properties of GTR Modified by SBS Copolymers, Materials, 2023, 16(5), p 1788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. A. Hejna, P. Kosmela, A. Olszewski, and M. Barczewski, “Foamed Flexible Polyurethane/Ground Tire Rubber Composites Modified with Hybrid Flame Retardant Compositions,” 8th International Seminar on Modern Polymeric Materials for Environmental Applications, Kraków, Poland, May 17-19, 2023, 2023.

  58. A. Olszewski, P. Kosmela, A. Piasecki, M. Barczewski, and A. Hejna, The Impact of Isocyanate Index and Filler Functionalities on the Performance of Flexible Foamed Polyurethane/Ground Tire Rubber Composites, Polymers (Basel), 2022, 14(24), p 5558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. A. Olszewski, P. Kosmela, A. Piasecki, W. Żukowska, M. Szczepański, P. Wojtasz, M. Barczewski, R. Barczewski, and A. Hejna, Comprehensive Investigation of Stoichiometry–Structure–Performance Relationships in Flexible Polyurethane Foams, Polymers (Basel), 2022, 14(18), p 3813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. A. Hejna, M. Barczewski, K. Skórczewska, J. Szulc, B. Chmielnicki, J. Korol, and K. Formela, Sustainable Upcycling of Brewers’ Spent Grain by Thermo-Mechanical Treatment in Twin-Screw Extruder, J. Clean. Prod., 2021, 285, 124839.

    Article  CAS  Google Scholar 

  61. D.K. Chattopadhyay and D.C. Webster, Thermal Stability and Flame Retardancy of Polyurethanes, Prog. Polym. Sci., 2009, 34(10), p 1068–1133.

    Article  CAS  Google Scholar 

  62. P.J. Davies, A.R. Horrocks, and A. Alderson, The Sensitisation of Thermal Decomposition of Ammonium Polyphosphate by Selected Metal Ions and Their Potential for Improved Cotton Fabric Flame Retardancy, Polym. Degrad. Stab., 2005, 88(1), p 114–122.

    Article  CAS  Google Scholar 

  63. W. Jiang, J. Hao, and Z. Han, Study on the Thermal Degradation of Mixtures of Ammonium Polyphosphate and a Novel Caged Bicyclic Phosphate and Their Flame Retardant Effect in Polypropylene, Polym. Degrad. Stab., 2012, 97(4), p 632–637.

    Article  CAS  Google Scholar 

  64. Z.S. Petrović, Z. Zavargo, J.H. Flyn, and W.J. Macknight, Thermal Degradation of Segmented Polyurethanes, J. Appl. Polym. Sci., 1994, 51(6), p 1087–1095.

    Article  Google Scholar 

  65. A. Nadal Gisbert, J.E. Crespo Amorós, J. LópezMartínez, and A.M. Garcia, Study of Thermal Degradation Kinetics of Elastomeric Powder (Ground Tire Rubber), Polym. Plast. Technol. Eng., 2007, 47(1), p 36–39.

    Article  Google Scholar 

  66. V. Sangeetha, N. Kanagathara, R. Sumathi, N. Sivakumar, and G. Anbalagan, Spectral and Thermal Degradation of Melamine Cyanurate, J. Mater., 2013, 2013, p 1–7.

    Google Scholar 

  67. M.M. Hirschler, Poly(Vinyl Chloride) and its Fire Properties, Fire Mater., 2017, 41(8), p 993–1006.

    Article  CAS  Google Scholar 

  68. H. Vahabi, B. Kandola, and M. Saeb, Flame Retardancy Index for Thermoplastic Composites, Polymers (Basel), 2019, 11(3), p 407.

    Article  PubMed  Google Scholar 

  69. M. Marć, Emissions of Selected Monoaromatic Hydrocarbons as a Factor Affecting the Removal of Single-Use Polymer Barbecue and Kitchen Utensils from Everyday Use, Sci. Total. Environ., 2020, 720, 137485.

    Article  PubMed  Google Scholar 

  70. A.P. Mouritz, Z. Mathys, and A.G. Gibson, Heat Release of Polymer Composites in Fire, Compos. Part A Appl. Sci. Manuf., 2006, 37(7), p 1040–1054.

    Article  Google Scholar 

  71. A. Hejna, Clays as Inhibitors of Polyurethane Foams’ Flammability, Materials, 2021, 14(17).

  72. S. Yin, X. Ren, P. Lian, Y. Zhu, and Y. Mei, Synergistic Effects of Black Phosphorus/Boron Nitride Nanosheets on Enhancing the Flame-Retardant Properties of Waterborne Polyurethane and Its Flame-Retardant Mechanism, Polymers (Basel), 2020, 12(7), p 1487.

    Article  CAS  PubMed  Google Scholar 

  73. B.V. Lotsch and W. Schnick, New Light on an Old Story: Formation of Melam during Thermal Condensation of Melamine, Chem. Eur. J., 2007, 13(17), p 4956–4968.

    Article  CAS  PubMed  Google Scholar 

  74. K.-S. Lim, S.-T. Bee, L.T. Sin, T.-T. Tee, C.T. Ratnam, D. Hui, and A.R. Rahmat, A Review of Application of Ammonium Polyphosphate as Intumescent Flame Retardant in Thermoplastic Composites, Compos. B Eng., 2016, 84, p 155–174.

    Article  CAS  Google Scholar 

  75. B. Schartel and T.R. Hull, Development of Fire-Retarded Materials—Interpretation of Cone Calorimeter Data, Fire Mater., 2007, 31(5), p 327–354.

    Article  CAS  Google Scholar 

  76. Y.Y. Chan, C. Ma, F. Zhou, Y. Hu, and B. Schartel, Flame Retardant Flexible Polyurethane Foams Based on Phosphorous Soybean-Oil Polyol and Expandable Graphite, Polym. Degrad. Stab., 2021, 191, 109656.

    Article  CAS  Google Scholar 

  77. S. Wendels, T. Chavez, M. Bonnet, K. Salmeia, and S. Gaan, Recent Developments in Organophosphorus Flame Retardants Containing P-C Bond and Their Applications, Materials, 2017, 10(7), p 784.

    Article  PubMed  PubMed Central  Google Scholar 

  78. U. OnurCinko and B. BehcetBecerir, Dependence of Colour Difference Formulae on Regular Changes of Colour Coordinates in CIELAB Colour Space, Industria Textila, 2019, 70(03), p 248–254.

    Article  Google Scholar 

  79. E. Bociaga and M. Trzaskalska, Influence of Polymer Processing Parameters and Coloring Agents on Gloss and Color of Acrylonitrile-Butadiene-Styrene Terpolymer Moldings, Polimery, 2016, 61(07/08), p 544–550.

    Article  CAS  Google Scholar 

  80. M. Thirumal, D. Khastgir, G.B. Nando, Y.P. Naik, and N.K. Singha, Halogen-Free Flame Retardant PUF: Effect of Melamine Compounds on Mechanical Thermal and Flame Retardant Properties, Polym. Degrad. Stab.. Degrad. Stab., 2010, 95(6), p 1138–1145.

    Article  CAS  Google Scholar 

  81. M. Modesti and A. Lorenzetti, Flame Retardancy of Polyisocyanurate-Polyurethane Foams: Use of Different Charring Agents, Polym. Degrad. Stab., 2002, 78(2), p 341–347.

    Article  CAS  Google Scholar 

  82. L. Zhang, M. Zhang, Y. Zhou, and L. Hu, The Study of Mechanical Behavior and Flame Retardancy of Castor Oil Phosphate-Based Rigid Polyurethane Foam Composites Containing Expanded Graphite and Triethyl Phosphate, Polym. Degrad. Stab., 2013, 98(12), p 2784–2794.

    Article  CAS  Google Scholar 

  83. Y. Chen, Z. Jia, Y. Luo, D. Jia, and B. Li, Environmentally Friendly Flame-Retardant and Its Application in Rigid Polyurethane Foam, Int J Polym Sci, 2014, 2014, p 1–7.

    Google Scholar 

  84. M. Modesti, A. Lorenzetti, F. Simioni, and M. Checchin, Influence of Different Flame Retardants on Fire Behaviour of Modified PIR/PUR Polymers, Polym. Degrad. Stab., 2001, 74(3), p 475–479.

    Article  CAS  Google Scholar 

  85. P. Bindu and S. Thomas, Viscoelastic Behavior and Reinforcement Mechanism in Rubber Nanocomposites in the Vicinity of Spherical Nanoparticles, J. Phys. Chem. B, 2013, 117(41), p 12632–12648.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Center for Research and Development (NCBR, Poland) in the frame of LIDER/3/0013/L-10/18/NCBR/2019 project: Development of technology for the manufacturing of foamed polyurethane-rubber composites for the use as damping materials. The support of Ministry of Science and Higher Education in Poland in the frame of the grant for education executed under the subject of No 0613/SBAD/4820 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was contributed by AH, PK; methodology was contributed by PK, MB, AP; formal analysis was contributed by PK, MB, AH; investigation was contributed by PK, AO, MB, AP, AH; writing—original draft preparation, was contributed by AH; writing—review and editing, was contributed by PK, MB, AH; funding acquisition was contributed by MB, AH; resources was contributed by PK, AH; visualization was contributed by AH; project administration was contributed by PK, AH; supervision was contributed by PK, AH.

Corresponding author

Correspondence to Aleksander Hejna.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosmela, P., Olszewski, A., Barczewski, M. et al. The Impact of Hybrid Flame Retardant Compositions on the Performance of Foamed Flexible Polyurethane/Ground Tire Rubber Composites. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09362-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09362-1

Keywords

Navigation