Skip to main content

Advertisement

Log in

Study on Microstructure and Fatigue Properties of A473M Stainless Steel Strengthened by Surface Rolling

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The surface of A473M martensitic stainless steel shaft sleeve was treated with rolling technology. This paper studies the change of microstructure and the influence on surface properties caused by feed parameters of rolling processing. The experimental results show that the surface of A473M martensitic stainless steel shaft sleeve is rolled, and the residual stress of its hardened layer changes from tensile stress to compressive stress and gradually decreases from the surface to the inside, and the maximum residual compressive stress on the surface can reach − 946 MPa. The surface roughness is reduced from 383 to 62.7 nm, the microstructure is refined, the width of martensite lath is reduced, and the texture in //ND direction is formed. The maximum nano-hardness of the surface hardened layer is increased from 2.5 to 4.8 GPa, the maximum depth of the hardened layer is 160 μm, and the maximum elastic modulus is increased from 140 to 217 GPa. Compared with A473M martensitic stainless steel matrix, the tensile strength is improved by 40%, the yield strength is improved by 22%, and the elongation is improved by 8%. The fracture mechanism is ductile fracture and cleavage fracture, and the tensile texture is changed from a single //TD direction to //TD and //RD directions. After rolling, the fatigue life of A473M martensitic stainless steel is increased by three orders of magnitude, from 5.4 × 104 to more than 1 × 107.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. T.Y. Ma, P.F. Wang, Z.B. Xu et al., Flow Distribution of Heat Exchanger Tubes in a Steam Generator and its Effect on Flow Field at Entrance of Reactor Coolant Pump, Nuclear Power Engineering., 2018, 39(4), p 58–62.

    CAS  Google Scholar 

  2. L.P. Zhang, L. Cai et al., Nuclear Main Pump Technology for Domestic Small Preaaurized Water Reactor Nuclear Power Plant, Pump, Technology, 2018, 5, p 1–4.

    Google Scholar 

  3. L.L. Wang and C.H. Lu, The Effect of Viscosity on the Cavitation Characteristics of High Speed Sleeve Bearing, J. Hydrodyn., 2015, 27(03), p 367–372.

    Article  ADS  CAS  Google Scholar 

  4. D.G. Rodrigues, G.G.B. Maria, N.A.L. Viana et al., Effect of Low Cold-Rolling Strain on Microstructure Texture Phase Transformation and Mechanical Properties of 2304 Lean Duplex Stainless Steel, Mater. Charact., 2019, 150, p 138–149.

    Article  CAS  Google Scholar 

  5. Q.Y. Zhao, F.L. Liu, L.D. Wang et al., Effect of Thread Rolling on the Properties of High-Strength Titanium Alloy High-Lock Bolts with 1240 MPa grade, Aerospace Manufacturing, Technology, 2016, 19, p 75–79.

    Google Scholar 

  6. C. Gül, G. Riza et al., Evaluation of Fatigue Performance of a Fillet Rolled Diesel Engine Crankshaft, Eng. Fail. Anal., 2013, 27(1), p 250–261.

    Google Scholar 

  7. A.T. Bozdana, N.N.Z. Gindy, H. Li et al., Deep Cold Rolling with Ultrasonic Vibrations-a New Mechanical Surface Enhancement Technique, Int. J. Mach. Tools Manuf, 2005, 45(6), p 713–718.

    Article  Google Scholar 

  8. M. Kattoura, A. Telang, S.R. Mannava et al., Effect of Ultrasonic Nanocrystal Surface Modification on Residual Stress Microstructure and Fatigue Behavior of ATI 718Plus Alloy, Mater. Sci. Eng., 2018, 711, p 364–377.

    Article  CAS  Google Scholar 

  9. J.X. Zheng, S.X. Jiang et al., Residual Stress Field in the Process of 2D Ultrasonic Rolling 7050 Aluminum Alloy, Surf Technol., 2017, 46(12), p 265–269.

    Google Scholar 

  10. D.M. Ba, X.F. Sun, J. Qiu et al., Tribological Behavior of Low Temperature Ion Sulphurizing Layer Based on Nanocrystalline Under oil Lubrication, China Surface Engineering., 2017, 30(6), p 140–148.

    Google Scholar 

  11. T. Nakata, C. Xu, Y. Uehara et al., Origin of Texture Weakening in a Rolled ZEX4101 Alloy Sheet and its Effect on Room Temperature Formability and Tensile Property, J. Alloy. Compd., 2019, 782, p 304–314.

    Article  CAS  Google Scholar 

  12. H.W. Ji et al., Effect of Ultrasonic Rolling on Microstructure and Mechanical Properties of High-Speed Laser Cladding GH5188 Superalloy Coating, Precision Form Eng., 2023, 15(1), p 146–155.

    Google Scholar 

  13. P Xiang. Study on the influence of surface ultrasonic rolling on tensile-tensile fatigue limit of Inconel718 superalloy. Guizhou University, 2023.

  14. H. Liu, Q. Gao, J.B. Dai et al., Effect of Ultrasonic Rolling Strengthening on Wear Resistance of Laser Cladding Layer of CoCrFeMnNiM (M=Ti, Mo) High Entropy Alloy, China Surf. Eng., 2022, 35(06), p 107–115.

    Google Scholar 

  15. Z Qin. Study on microstructure and properties of CrMnFeCoNi high entropy alloy prepared by laser additive/ultrasonic rolling. Taiyuan University of Technology, 2021.

  16. W Wang. Study on friction and wear properties of low alloy steel by ultrasonic surface nano-crystallization. China University of Petroleum, 2011.

  17. J Zhu. Study on surface integrity and mechanical behavior of Ti6Al4V alloy strengthened by temperature field assisted ultrasonic rolling. Qilu University of Technology

  18. M. Zhang, E.L. Mu, H.R. Xu et al., Effect Mechanism of Microstructure on High Cycle Fatigue of 0Cr13Ni5Mo Stainless Steel, Military Equip. Mater. Sci. Eng., 2018, 41(05), p 109–113.

    Article  Google Scholar 

  19. C. Xin, W. Xu, Q.Y. Sun et al., Effect of Surface Mechanical Rolling on Microstructure and Mechanical Properties of Zr-4 Alloy, Rare Metal Mater. Eng., 2017, 46(7), p 1954–1960.

    CAS  Google Scholar 

  20. S.X. Jiang and J.X. Zheng, Microstructure and Mechanical Properties of 7050 Aluminum Alloy by Two-Dimensional Ultrasonic Rolling, Metal Heat Treat., 2018, 43(5), p 116–119.

    CAS  Google Scholar 

  21. Q. Zhang, Z. Hu, W. Su et al., Microstructure and Surface Properties of 17–4PH Stainless Steel by Ultrasonic Surface Rolling Technology, Surf. Coat. Technol., 2017, 321, p 64–73.

    Article  CAS  Google Scholar 

  22. A. Saastamoinen, A. Kaijalainen, D. Porter et al., The Effect of Finish Rolling Temperature and Tempering on the Microstructure, Mechanical Properties and Dislocation Density of Direct-Quenched Steel, Mater. Charact., 2018, 139, p 1–10.

    Article  CAS  Google Scholar 

  23. M. Maric, O. Muránsky, I. Karatchevtseva et al., The Effect of Cold-Rolling on the Microstructure and Corrosion Behaviour of 316L Alloy in FLiNaK Molten Salt, Corros. Sci., 2018, 12, p 665–677.

    Google Scholar 

  24. Z.X. Huang, X.C. Zhang, D. Shan et al., Effect of Surface Deep Rolling Treatment on Microstructure, Properties and Residual Stress Distribution of Pure Nickel, Aviat. Mater. J. Mater. Sci., 2016, 36(1), p 39–47.

    ADS  CAS  Google Scholar 

  25. E.R. Dinnebier, L.J.S. Billinge, G.P. Bruce et al., Powder Diffraction: Theory and Practice, RSC, 2008, 3, p 10.

    Google Scholar 

  26. Y. Liu, D.P. Wang, C.Y. Deng et al., Microstructure and Properties off Al2O3 Films on Ti6Al4V Using Ultrasonic Surface Rolling Processing, J. Mater. Eng., 2015, 43(7), p 8–13.

    Google Scholar 

  27. X. Kong, S. Ding, H. Yang et al., Effects of Sizes and Mechanical Properties of Fuel Coupon on the Rolling Simulation Results of Monolithic Fuel Plate Blanks, Nucl. Eng. Technol., 2018, 50(8), p 1330–1338.

    Article  CAS  Google Scholar 

  28. L.Q. Chen, B. Xiang, X.C. Ren et al., Influences of Surface Ultrasonic Rolling Processing Parameters on Surface Condition of Axle Steel Used in High Speed Trains, China Surf. Eng., 2014, 27(5), p 96–101.

    CAS  Google Scholar 

  29. S.W. Wang, A.L. Wen, S.J. Bing et al., Numerical Simulation and Process Analysis of Residual Stress in Rolling Strengthening, J Comput Mech., 2008, 25(S1), p 113–118.

    CAS  Google Scholar 

  30. S. Chalme, A. Mankar and Y. Bhalerao, Effect of Lubricant Viscosity and Surface Roughness on Coefficient of Friction in Rolling Contact, Tribol. Ind., 2013, 35(4), p 330–336.

    Google Scholar 

  31. S. Zhang, W.J. Zhang, W.D. Cui et al., Microstructure and Wear Properties of Fe Based Alloy Deposited on Martensitic Stainless Steel with Plasma Surfacing, J. Shenyang Univer. Technol., 2019, 41(2), p 148–153.

    Google Scholar 

  32. F. Zhang and Y.C. Zhao, Influence of Ultrasonicsurface Rolling Processing on Tribological Performance of 45 Steel and Its Mechanism, Mater Mech Eng., 2017, 41(8), p 44–48.

    Article  Google Scholar 

  33. C.H. Zhanc, H.F. Zhanc, K. Liu et al., Microstructure and Wear Resistance of Insitusynthesized WxC/Ni Composite Coating Prepared with Vacuum Cladding, J. Shenyang Univers. Technol., 2019, 41(1), p 25–30.

    Google Scholar 

  34. B. Zhou, H.J. Zhou, J.W. Dai et al., Microstructure Friction and Wear Resistance of Mg-6Gd2Zn-0.4Zr alloy, Heat Treat Metals, 2018, 43(1), p 147–151.

    CAS  Google Scholar 

  35. S.L. Bulyehev, V.P. Alekhin, M. Kh Shorshorov, A.P. Ternovskii and G.D. Shnyrev, Determining Young’s Modulus from the Indenter Penetration Diagram, Zavod. Lab., 1975, 41(9), p 1137–1140.

    Google Scholar 

  36. A.E.H. Love, Boussinesq’s Problem for a Rigid Cone, QJ Math., 1939, 10, p 161–1753.

    Article  ADS  MathSciNet  Google Scholar 

  37. L.N. Sneddon, The Relation Between Losd and Penetration in the Axisymmetric Boussinesq Problem for a Puneh of Arbitrary Profile, Int. Eng. Sci., 1965, 3, p 47–56.

    Article  Google Scholar 

  38. A. Bolshakov and G.M. Pharr, Influenees of Pile-UP on the Measurement of Mechanical Properties by Load and Depth Sensing Indentation Techniques, Mater. Res., 1998, 13, p 1049–1058.

    Article  ADS  CAS  Google Scholar 

  39. T. Wang, D.P. Wang, G. Liu et al., Nano-machining of 40Cr ultrasonic surface rolling, J. Mech. Eng., 2009, 45(5), p 177–183.

    Article  CAS  Google Scholar 

  40. Y.R. Li and Z.Z. Yun, Materials Physics Introduction, Tsing University Press, Beijing, 2001.

    Google Scholar 

  41. M.H. EI-Haddad, L.P. Pook and K.J. Topper, Metal Fatigue, Oxford University, London, 1974, p 130–195

    Google Scholar 

  42. S.S. Wu, H.L. Sun and Q. Yang, Fatigue Life Analysis of Harm on Icreducer Flex Spline Based on Cold Rolling Process, J. Mech. Trans., 2019, 43(1), p 131–135.

    Google Scholar 

  43. Z.M. Yu, Research on Key Technologies of Cold Rolling for Flex Spline of Harmonic Reducer, South China University of Technology, Guangzhou, 2017, p 66–67

    Google Scholar 

  44. B.Q. Yu, W. Li, J.H. Xue et al., Prediction of Bending Fatigue Life for Gears Based on Dynamic Load Spectra, J. Univ. Sci. Technol. Beijing, 2013, 35(6), p 813–817.

    Google Scholar 

  45. C.W. Shao, S.L. Chen, X.L. Zhao et al., High-Cycle Fatigue Property of High Vanadium Medium-Carbon Microalloyed Steel, Heat Treat. Met., 2014, 39(2), p 19–22.

    CAS  Google Scholar 

  46. X.L. Zheng, On the Relationship Between Fatigue Crack Initiation Life and Yield Stress of Metals, Mech. Strength., 1989, 11(1), p 35–39.

    Google Scholar 

  47. F. Zhang and X.C. Shang-Guan, Effect of Surface Ultrasonic Rolling Treatment on Fatigue Properties of AISI304 Stainless Steel, Hot Work. Technol., 2017, 16, p 144–148.

    Google Scholar 

  48. S.F. Kang, Study on Damage Evolution Law of Induction Hardening Layer of Remanufactured Blank, Xi’an University of Technology, Xi’an, 2021.

    Google Scholar 

  49. Q. Wang, C. Xin, Q. Sun et al., Biaxial Tension-torsion Fatigue Behavior of Gradient Nano-Grained Pure Titanium Fabricated by Surface Nano-Crystallization, Mater. Sci. Eng., 2017, 702, p 125–132.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge to the financial support for this research from National Key Research and Development Program of China (No. 2023YFB4606605), Science and Technology Research Project of Liaoning Province (No. LJKQ2021050) and Shenyang Science and Technology Funded Project (No. 22-101-0-16 and No. 19-109-1-03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. H. Zhang or C. L. Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, G.X., Zhang, C.H., Wang, L. et al. Study on Microstructure and Fatigue Properties of A473M Stainless Steel Strengthened by Surface Rolling. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09273-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09273-1

Keywords

Navigation