Skip to main content
Log in

Effect of Poling on β-Phase Structure of Electrospun PVDF-TrFE Nanofiber Film

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This article elucidates the field-assisted high-temperature poling effect on the improvement of crystallinity of β-phase structure of the electrospun-deposited PVDF-TrFE nanofiber film. Morphology, crystallinity and their variation/behavior on poling ferroelectric polymer electrospun PVDF-TrFE nanofibers have been investigated thoroughly using FESEM, XRD and Raman spectroscopy. Field-assisted high-temperature poling at 120 °C of PVDF-TrFE nanofiber film generated a condition similar to high mechanical stress which assisted the nucleation and growth kinetics of new β crystals and their reorientation mechanism due to sliding diffusion of ferroelectric polymer chains along the chain axis in the nanofiber. On increasing the poling time duration number of oriented polar crystalline domain regions in deposited nanofiber films rises which resulted in enhancement of crystallinity of films. XRD and Raman analysis complemented the study of enhancement of β-phase crystallinity in as-deposited PVDF-TrFE nanofiber film on poling with no noticeable change in the dimension and morphology of the nanofibers. Further, enhancement of ferroelectric property of the poled nanofiber film has been observed with increase of poling time which supports our interpretation of poling facilitated nucleation and growth kinetics of new β-crystal with long trans-sequences in deposited nanofiber films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. X. Liu, J. Ma, X. Wu, L. Lin, and X. Wang, Polymeric Nanofibers with Ultrahigh Piezoelectricity via Self-Orientation of Nanocrystals, ACS Nano, 2017, 11, p 1901–1910.

    Article  CAS  PubMed  Google Scholar 

  2. M.S.S. Bafqi, R. Bagherzadeh, and M. Latifi, Fabrication of Composite PVDF-ZnO Nanofiber Mats by Electrospinning for Energy Scavenging Application with Enhanced Efficiency, J. Polym. Res., 2015, 22, p 1–9.

    Google Scholar 

  3. T.-F. Chen and C.-T. Lo, Influence of Interfacial Compatibility on the Crystallization Behavior of Electrospun Core–Sheath Fibers, Polymer, 2023, 283, p 126200.

    Article  CAS  Google Scholar 

  4. S. Mirjalali, A.M. Varposhti, S. Abrishami, R. Bagherzadeh, M. Asadnia, S. Huang, S. Peng, C.-H. Wang, and S. Wu, A Review on Wearable Electrospun Polymeric Piezoelectric Sensors and Energy Harvesters, Macromol. Mater. Eng., 2023, 308, p 2200442.

    Article  CAS  Google Scholar 

  5. L. Persano, C. Dagdeviren, Y. Su, Y. Zhang, S. Girardo, D. Pisignano, Y. Huang, and J.A. Rogers, High Performance Piezoelectric Devices Based on Aligned Arrays of Nanofibers of Poly(Vinylidenefluoride-Co-Trifluoroethylene), Nat. Commun., 2013, 4, p 1610–1633.

    Article  Google Scholar 

  6. P. Martins, A.C. Lopes, and S. Lanceros-Mendez, Electroactive Phases of Poly(Vinylidene Fluoride): Determination, Processing and Applications, Prog. Polym. Sci., 2014, 39, p 683–706.

    Article  CAS  Google Scholar 

  7. R. Khajavi and M. Abbasipour, Industrial Applications for Intelligent Polymers and Coatings, in M. Hosseini and A. S.H. Makhlouf Ed., Springer, Berlin, 2016, p 313–336.

  8. D. Roy, P.S.G. Pattader, D. Bandyopadhyay, M. Chakraborty, C.-H. Wang, Y.-W. Yang, and M. Mukherjee, Dipolar Alignment in a Ferroelectric Dielectric Layer of FeFETs to Boost Charge Mobility and Nonvolatile Memory, ACS Appl. Electron. Mater, 2020, 2, p 3187–3198.

    Article  CAS  Google Scholar 

  9. D. Roy, S. Sinha, C.-H. Wang, Y.-W. Yang, and M. Mukherjee, Interfacial Interaction of Absorbate Copper Phthalocyanine with PVDF based Ferroelectric Polymer Substrates: A Spectroscopic Study, Langmuir, 2020, 36, p 4607–4618.

    Article  CAS  PubMed  Google Scholar 

  10. Y.-Y. Choi, P. Sharma, C. Phatak, D.J. Gosztola, Y. Liu, J. Lee, B. Lee, J. Li, A. Gruverman, S. Ducharme, and S. Hong, Enhancement of Local Piezoresponse in Polymer Ferroelectrics via Nanoscale Control of Microstructure, ACS Nano, 2015, 9, p 1809–1819.

    Article  CAS  PubMed  Google Scholar 

  11. N. Hernández, V.A. González-González, I.B. Dzul-Bautista, N. Ornelas-Soto, J.M. Barandiarán, and J. Gutierrez, Electrospun Poly(vinylidene fluoride-trifluoroethylene) Based Flexible Magnetoelectric Nanofibers, Eur. Polym. J., 2018, 109, p 336–340.

    Article  Google Scholar 

  12. Z. Cui, N.T. Hassankiadeh, Y. Zhuang, E. Drioli, and Y.M. Lee, Crystalline Polymorphism in Poly(vinylidenefluoride) Membranes, Prog. Polym. Sci., 2015, 51, p 94–126.

    Article  CAS  Google Scholar 

  13. M. Bohlén and K. Bolton, Conformational Studies of Poly(vinylidene fluoride), Poly(trifluoroethylene) and Poly(vinylidene fluoride-co-trifluoroethylene) Using Density Functional Theory, Phys. Chem. Chem. Phys., 2014, 16, p 12929.

    Article  PubMed  Google Scholar 

  14. T. Yang, H. Pan, G. Tian, B. Zhang, D. Xiong, Y. Gao, C. Yan, X. Chu, N. Chen, S. Zhong, L. Zhang, W. Deng, and W. Yang, Hierarchically Structured PVDF/ZnO Core-Shell Nanofibers for Self-Powered Physiological Monitoring Electronics, Nano Energy, 2020, 72, 104706.

    Article  Google Scholar 

  15. M. Zhu, M. Lou, I. Abdalla, J. Yu, Z. Li, and B. Ding, Highly Shape Adaptive Fiber Based Electronic Skin for Sensitive Joint Motion Monitoring and Tactile Sensing, Nano Energy, 2020, 69, 104429.

    Article  CAS  Google Scholar 

  16. B.H. Moghadam, M. Hasanzadeh, and A. Simchi, Self-Powered Wearable Piezoelectric Sensors Based on Polymer Nanofiber–Metal–Organic Framework Nanoparticle Composites for Arterial Pulse Monitoring, ACS Appl. Nano Mater., 2020, 3, p 8742–8752.

    Article  CAS  Google Scholar 

  17. M. Haghayegh, R. Cao, F. Zabihi, R. Bagherzadeh, S. Yang, and M. Zhu, Recent Advances in Stretchable, Wearable and bio-Compatible Triboelectric Nanogenerators, J. Mater. Chem. C, 2022, 10, p 11439.

    Article  CAS  Google Scholar 

  18. D. Kim, Z. Yang, J. Cho, D. Park, D.H. Kim, J. Lee, S. Ryu, S. Kim, and M. Kim, High-Performance Piezoelectric Yarns for Artificial Intelligence-Enabled Wearable Sensing and Classification, EcoMat, 2023, 5, p 12384.

    Article  Google Scholar 

  19. Y. Liu, T. Yang, B. Zhang, T. Williams, Y. Lin, L. Li, Y. Zhou, W. Lu, S.H. Kim, L.Q. Chen, J. Bernholc, and Q. Wang, Structural Insight in the Interfacial Effect in Ferroelectric Polymer Nanocomposites, Adv. Mater., 2020, 32, p 2005431.

    Article  CAS  Google Scholar 

  20. S. An, H.S. Jo, G. Li, E. Samuel, S.S. Yoon, and A.L. Yarin, Sustainable Nanotextured Wave Energy Harvester Based on Ferroelectric Fatigue-Free and Flexoelectricity-Enhanced Piezoelectric P(VDF-TrFE) Nanofibers with BaSrTiO3 Nanoparticles, Adv. Funct. Mater., 2020, 30, p 2001150.

    Article  CAS  Google Scholar 

  21. J. Jiang, S. Tu, R. Fu, J. Li, F. Hu, B. Yan, Y. Gu, and S. Chen, Flexible Piezoelectric Pressure Tactile Sensor Based on Electrospun BaTiO3/Poly(vinylidene fluoride)Nanocomposite Membrane, ACS Appl. Mater. Interfaces, 2020, 12, p 33989–33998.

    Article  CAS  PubMed  Google Scholar 

  22. K. Shi, B. Sun, X. Huang, and P. Jiang, Synergistic Effect of Graphene Nanosheet and BaTiO3 Nanoparticles on Performance Enhancement of Electrospun PVDF Nanofiber Mat for Flexible Piezoelectric Nanogenerators, Nano Energy, 2018, 52, p 153–162.

    Article  CAS  Google Scholar 

  23. X. Guan, B. Xu, and J. Gong, Hierarchically Architected Polydopamine Modified BaTiO3@P(VDF-TrFE) Nanocomposite Fibermats for Flexible Piezoelectric Nanogenerators and Self-Powered Sensors, Nano Energy, 2020, 70, p 104516.

    Article  CAS  Google Scholar 

  24. G. Min, A. Pullanchiyodan, A.S. Dahiya, E.S. Hosseini, Y. Xu, D.M. Mulvihill, and R. Dahiya, Ferroelectric-Assisted High-Performance Triboelectric Nanogenerators Based on Electrospun P(VDF-TrFE) Composite Nanofibers with Barium Titanate Nanofillers, Nano Energy, 2021, 90, p 106600.

    Article  CAS  Google Scholar 

  25. Y. Su, W. Li, L. Yuan, C. Chen, H. Pan, G. Xie, G. Conta, S. Ferrier, X. Zhao, G. Chen, H. Tai, Y. Jiang, and J. Chen, Piezoelectric Fiber Composites with Polydopamine Interfacial Layer for Self-Powered Wearable Biomonitoring, Nano Energy, 2021, 89, p 106321.

    Article  CAS  Google Scholar 

  26. Y. Zhuang, J. Li, Q. Hu, S. Han, W. Liu, C. Peng, Z. Li, L. Zhang, X. Wei, and Z. Xu, Flexible Composites with Ce-Doped BaTiO3/P(VDF-TrFE) Nanofibers for Piezoelectric Device, Compos. Sci. Technol., 2020, 200, p 108386.

    Article  CAS  Google Scholar 

  27. Y. Tajitsu, Smart Piezoelectric Fabric and Its Application to Control of Humanoid Robot, Ferroelectrics, 2016, 499, p 36–46.

    Article  CAS  Google Scholar 

  28. B. Yang, K.S. Yun, Efficient Energy Harvesting from Human Motion Using Wearable Piezoelectric Shell Structures, in International Solid-State Sensors, Actuators and Microsystems Conference, 2011, p 2646–2649.

  29. M. Zhang, T. Gao, J. Wang, J. Liao, Y. Qiu, Q. Yang, H. Xue, Z. Shi, Y. Zhao, Z. Xiong, and L. Chen, A Hybrid Fibers Based Wearable Fabric Piezoelectric Nanogenerator for Energy Harvesting Application, Nano Energy, 2015, 13, p 298–305.

    Article  CAS  Google Scholar 

  30. M. Lee, C.-Y. Chen, S. Wang, S.N. Cha, Y.J. Park, J.M. Kim, L.-J. Chou, and Z.L. Wang, A Hybrid Piezoelectric Structure for Wearable Nanogenerators, Adv. Mater., 2012, 24, p 1759–1764.

    Article  CAS  PubMed  Google Scholar 

  31. C. Zhang, W. Fan, S. Wang, Q. Wang, Y. Zhang, and K. Dong, Recent Progress of Wearable Piezoelectric Nanogenerators, ACS Appl. Electron. Mater., 2021, 3, p 2449–2467.

    Article  CAS  Google Scholar 

  32. H. He, Y. Fu, W. Zang, Q. Wang, L. Xing, Y. Zhang, and X. Xue, A flexible Self-Powered T-ZnO/PVDF/Fabric Electronic-Skin with Multi-Functions of Tactile-Perception, Atmosphere-Detection and Self-Clean, Nano Energy, 2017, 37, p 37–48.

    Article  Google Scholar 

  33. N. Weber, Y.S. Lee, S. Shanmugasundaram, M. Jaffe, and T.L. Arinzeh, Characterization and In Vitro Cytocompatibility of Piezoelectric Electrospun Scaffolds, Acta Biomater., 2010, 6, p 3550–3556.

    Article  CAS  PubMed  Google Scholar 

  34. L.T. Beringer, X. Xu, W. Shih, W.H. Shih, R. Habas, and C.L. Schauer, An Electrospun PVDF-TrFe Fiber Sensor Platform for Biological Applications, Sens. Actuator A Phys., 2015, 222, p 293–300.

    Article  CAS  Google Scholar 

  35. T. Li, M. Qu, C. Carlos, L. Gu, F. Jin, T. Yuan, X. Wu, J. Xiao, T. Wang, W. Dong, X. Wang, and Z. Feng, High-Performance Poly (vinylidene difluoride)/Dopamine Core/Shell Piezoelectric Nanofiber and Its Application for Biomedical Sensors, Adv. Mater., 2021, 33, p 2006093.

    Article  CAS  Google Scholar 

  36. F. Calavalle, M. Zaccaria, G. Selleri, T. Cramer, D. Fabiani, and B. Fraboni, Piezoelectric and Electrostatic Properties of Electrospun PVDF-TrFE Nanofibers and their Role in Electromechanical Transduction in Nanogenerators and Strain Sensors, Macromol. Mater. Eng., 2020, 305, p 2000162.

    Article  CAS  Google Scholar 

  37. S. Zhang, B. Zhang, J. Zhang, and K. Ren, Enhanced Piezoelectric Performance of Various Electrospun PVDF Nanofibers and Related Self-Powered Device Applications, ACS Appl. Mater. Interfaces, 2021, 13, p 32242.

    Article  CAS  PubMed  Google Scholar 

  38. Z. He, F. Rault, M. Lewandowski, E. Mohsenzadeh, and F. Salaün, Electrospun PVDF Nanofibers for Piezoelectric Applications: A Review of the Influence of Electrospinning Parameters on the β Phase and Crystallinity Enhancement, Polymers, 2021, 13, p 174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. S. Mirjalali, R. Bagherzadeh, S. Abrishami, M. Asadnia, S. Huang, A. Michael, S. Peng, C-H Wang,, and S. Wu, Multilayered Electrospun/Electrosprayed Polyvinylidene Fluoride+Zinc Oxide Nanofiber Mats with Enhanced Piezoelectricity, Macromol. Mater. Eng. 2023, 2300009.

  40. M. Kim, S. Lee, and Y. Kim, Inkjet Printing for Flexible and Wearable Electronics, APL Mater., 2020, 8, 071109.

    Article  CAS  Google Scholar 

  41. S. Park, Y. Kwon, M. Sung, B.-S. Lee, J. Bae, and W.R. Yu, Poling-Free Spinning Process of Manufacturing Piezoelectric Yarns for Textile Applications, Mater. Des., 2019, 179, 107889.

    Article  CAS  Google Scholar 

  42. A. Arrigoni, L. Brambilla, C. Bertarelli, G. Serra, M. Tommasini, and C. Castiglioni, PVDF-TrFE Nanofibers: Structure of the Ferroelectric and Paraelectric Phases through IR and Raman Spectroscopies, RSC Adv., 2020, 10, p 37779–37796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. R. Tanaka, K. Tashiro, and M. Kobayashi, Annealing Effect on the Ferroelectric Phase Transition Behavior and Domain Structure of Vinylidene Fluoride (VDF)–Trifluoroethylene Copolymers: A Comparison Between Uniaxially Oriented VDF 73 and 65% Copolymers, Polymer, 1999, 40, p 3855–3865.

    Article  CAS  Google Scholar 

  44. P. Viswanath and M. Yoshimura, Light Induced Reversible Phase Transition in Polyvinylidene Fluoride-Based Nanocomposites, SN Appl. Sci., 2019, 1, p 1519.

    Article  Google Scholar 

  45. A. Milani, C. Castiglioni, and S. Radice, Joint Experimental and Computational Investigation of the Structural and Spectroscopic Properties of Poly (vinylidene fluoride) Polymorphs, J. Phys. Chem. B, 2015, 119, p 4888–4897.

    Article  CAS  PubMed  Google Scholar 

  46. N.J. Ramer, T. Marrone, and K.A. Stiso, Structure and Vibrational Frequency Determination for a-Poly(vinylidene fluoride) Using Density-Functional Theory, Polymer, 2006, 47, p 7160–7165.

    Article  CAS  Google Scholar 

  47. I. Terzic, N.L. Meereboer, M. Acuautla, G. Portale, and K. Loos, Electroactive Materials with Tunable Response Based on Block Copolymer Self-Assembly, Nat. Comm., 2019, 10, p 601.

    Article  CAS  Google Scholar 

  48. F. Bargain, P. Panine, F. Domingues Dos Santos, and S. Tencé-Girault, From Solvent-Cast to Annealed and Poled Poly(VDF-co-TrFE) Films: New Insights on the Defective Ferroelectric Phase, Polymer, 2016, 105, p 144–156.

    Article  CAS  Google Scholar 

  49. N. Spampinato, J. Maiz, G. Portale, M. Maglione, G. Hadziioannou, and E. Pavlopoulou, Enhancing the Ferroelectric Performance of P(VDF-co-TrFE) through Modulation of Crystallinity and Polymorphism, Polym. (Guildf.), 2018, 149, p 66–72.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank IIT Guwahati for support through the IPDF grant. The authors also acknowledge support from the Centre of Nanotechnology, IIT Guwahati. D.R. thanks DST-SERB for support through the NPDF project grant- file no.PDF/2015/000111. D.R. and M.C. thank UGC-DAE-CSR for support through the project grant file no.CRS/2022-23/01/657.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dhrubojyoti Roy or Mohua Chakraborty.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is an invited submission to the Journal of Materials Engineering and Performance selected from presentations at the 4th International Conference on Processing & Characterization of Materials (ICPCM 2022) held December 9–11, 2022, at the National Institute of Technology, Rourkela, Odisha, India. It has been expanded from the original presentation. The issue was organized by Prof. Joao Pedro Oliveira, Universidade NOVA de Lisboa, Portugal; Prof. B. Venkata Manoj Kumar, Indian Institute of Technology Roorkee, India; Dr. D. Arvindha Babu, DMRL, DRDO, Hyderabad, India; Prof. Kumud Kant Mehta and Prof. Anshuman Patra, National Institute of Technology Rourkela, Odisha, India; and Prof. Manab Mallik, National Institute of Technology Durgapur, India.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, D., Mishra, T.T., Parashar, C.K. et al. Effect of Poling on β-Phase Structure of Electrospun PVDF-TrFE Nanofiber Film. J. of Materi Eng and Perform 33, 5439–5445 (2024). https://doi.org/10.1007/s11665-024-09207-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-024-09207-x

Keywords

Navigation