Skip to main content
Log in

Microstructural Evolution and Mechanical Properties of AZ31 Magnesium Alloy Processed through Constrained Groove Pressing at Different Deformations and Temperatures

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, severe plastic deformation through the constrained groove pressing (CGP) method followed by an annealing operation was applied to the AZ31 Mg alloy sheets to improve their microstructural and mechanical properties. Accordingly, the sample is repeatedly deformed at high temperatures through a scheduled pressing succession to accelerate grain refinement. Investigating the deformation and temperature successions in the CGP process indicated their significant dependence on the microstructure characterization and mechanical properties. Also, processing temperature reduction restricted static recovery, recrystallization, and grain growth, leading to the development of fine- and ultrafine-grained structures. Hence, the appropriate selection of deformation and temperature successions can thoroughly affect the total strain, texture evolution, and grain refinement. Therefore, such a thermomechanical treatment can be extended to a broad range of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. B. Xie, H. Li, Y. Ning, and M. Fu, Discontinuous Dynamic Recrystallization and Nucleation Mechanisms Associated with 2-, 3- and 4-Grain Junctions of Polycrystalline Nickel-Based Superalloys, Mater. Des., 2023, 231, p 112041. https://doi.org/10.1016/j.matdes.2023.112041

    Article  CAS  Google Scholar 

  2. L. Chen, Y. Zhao, M. Li, L. Li, L. Hou, and H. Hou, Reinforced AZ91D Magnesium Alloy with Thixomolding Process Facilitated Dispersion of Graphene Nanoplatelets and Enhanced Interfacial Interactions, Mater. Sci. Eng. A, 2021, 804, p 140793. https://doi.org/10.1016/j.msea.2021.140793

    Article  CAS  Google Scholar 

  3. W. Liu, Y. Zhao, Y. Zhang, C. Shuai, L. Chen, Z. Huang, and H. Hou, Deformation-Induced Dynamic Precipitation of 14H-LPSO Structure and Its Effect on Dynamic Recrystallization in Hot-Extruded Mg-Y-Zn Alloys, Int. J. Plast., 2023, 164, p 103573. https://doi.org/10.1016/j.ijplas.2023.103573

    Article  CAS  Google Scholar 

  4. M. Li, Q. Guo, L. Chen, L. Li, H. Hou, and Y. Zhao, Microstructure and Properties of Graphene Nanoplatelets Reinforced AZ91D Matrix Composites Prepared by Electromagnetic Stirring Casting, J. Mater. Res. Technol., 2022, 21, p 4138–4150. https://doi.org/10.1016/j.jmrt.2022.11.033

    Article  CAS  Google Scholar 

  5. L. Chen, Y. Zhao, J. Jing, and H. Hou, Microstructural Evolution in Graphene Nanoplatelets Reinforced Magnesium Matrix Composites fabricated Through Thixomolding Process, J. Alloys Compd., 2023, 940, p 168824. https://doi.org/10.1016/j.jallcom.2023.168824

    Article  CAS  Google Scholar 

  6. Y.V.R.K. Prasad, and K.P. Rao, Processing Maps for Hot Deformation of Rolled AZ31 Magnesium Alloy Plate: Anisotropy of Hot Workability, Mater. Sci. Eng. A, 2008, 487, p 316–327. https://doi.org/10.1016/j.msea.2007.10.038

    Article  CAS  Google Scholar 

  7. J. Hirsch and T. Al-Samman, Superior Light Metals by Texture Engineering: Optimized Aluminum and Magnesium Alloys for Automotive Applications, Acta Mater., 2013, 61, p 818–843. https://doi.org/10.1016/j.actamat.2012.10.044

    Article  CAS  Google Scholar 

  8. G. Martin, C.W. Sinclair, and J.-H. Schmitt, Plastic Strain Heterogeneities in an Mg–1Zn–0.5Nd Alloy, Scr. Mater., 2013, 68, p 695–698. https://doi.org/10.1016/j.scriptamat.2013.01.017

    Article  CAS  Google Scholar 

  9. T. Dessolier, P. Lhuissier, F. Roussel-Dherbey, F. Charlot, C. Josserond, J.-J. Blandin, and G. Martin, Effect of Temperature on Deformation Mechanisms of AZ31 Mg-Alloy under Tensile Loading, Mater. Sci. Eng. A, 2020, 775, p 138957. https://doi.org/10.1016/j.msea.2020.138957

    Article  CAS  Google Scholar 

  10. C.C. Aydıner and M.A. Telemez, Multiscale Deformation Heterogeneity in Twinning Magnesium Investigated with In Situ Image Correlation, Int. J. Plast., 2014, 56, p 203–218. https://doi.org/10.1016/j.ijplas.2013.12.001

    Article  CAS  Google Scholar 

  11. D. Liao, S.-P. Zhu, B. Keshtegar, G. Qian, and Q. Wang, Probabilistic Framework for Fatigue Life Assessment of Notched Components Under Size Effects, Int. J. Mech. Sci., 2020, 181, p 105685. https://doi.org/10.1016/j.ijmecsci.2020.105685

    Article  Google Scholar 

  12. X. Niu, S.-P. Zhu, J.-C. He, D. Liao, J.A.F.O. Correia, F. Berto, and Q. Wang, Defect Tolerant Fatigue Assessment of AM Materials: Size Effect and Probabilistic Prospects, Int. J. Fatigue, 2022, 160, p 106884. https://doi.org/10.1016/j.ijfatigue.2022.106884

    Article  CAS  Google Scholar 

  13. X.-K. Li, S.-P. Zhu, D. Liao, J.A.F.O. Correia, F. Berto, and Q. Wang, Probabilistic Fatigue Modelling of Metallic Materials Under Notch and Size Effect using the Weakest Link Theory, Int. J. Fatigue, 2022, 159, p 106788. https://doi.org/10.1016/j.ijfatigue.2022.106788

    Article  CAS  Google Scholar 

  14. P. Zhao, J. Zhu, K. Yang, M. Li, G. Shao, H. Lu, Z. Ma, H. Wang, and J. He, Outstanding Wear Resistance of Plasma Sprayed High-Entropy monoboride Composite Coating by Inducing Phase Structural Cooperative Mechanism, Appl. Surf. Sci., 2023, 616, p 156516. https://doi.org/10.1016/j.apsusc.2023.156516

    Article  CAS  Google Scholar 

  15. W.P. Jia, X.D. Hu, H.Y. Zhao, D.Y. Ju, and D.L. Chen, Texture Evolution of AZ31 Magnesium Alloy Sheets During Warm Rolling, J. Alloys Compd., 2015, 645, p 70–77. https://doi.org/10.1016/j.jallcom.2015.04.121

    Article  CAS  Google Scholar 

  16. B. Wang, L. Deng, C. Adrien, N. Guo, Z. Xu, and Q. Li, Relationship Between Textures and Deformation Modes in Mg–3Al–1Zn Alloy During Uniaxial Tension, Mater Charact, 2015, 108, p 42–50. https://doi.org/10.1016/j.matchar.2015.08.014

    Article  CAS  Google Scholar 

  17. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and Post-dynamic Recrystallization Under Hot, Cold and Severe Plastic Deformation Conditions, Prog. Mater. Sci., 2014, 60, p 130–207. https://doi.org/10.1016/j.pmatsci.2013.09.002

    Article  CAS  Google Scholar 

  18. M. Ebrahimi, Q. Wang, and S. Attarilar, A Comprehensive Review of Magnesium-Based Alloys and Composites Processed by Cyclic Extrusion Compression and the Related Techniques, Prog. Mater. Sci., 2023, 131, p 101016. https://doi.org/10.1016/j.pmatsci.2022.101016

    Article  CAS  Google Scholar 

  19. M. Ebrahimi and M.A. Par, Twenty-Year Uninterrupted Endeavor of Friction Stir Processing by Focusing on Copper and Its Alloys, J. Alloys Compd., 2019, 781, p 1074–1090. https://doi.org/10.1016/j.jallcom.2018.12.083

    Article  CAS  Google Scholar 

  20. F. Djavanroodi, M. Ebrahimi, B. Rajabifar, and S. Akramizadeh, Fatigue Design Factors for ECAPed Materials, Mater. Sci. Eng. A, 2010 https://doi.org/10.1016/j.msea.2010.09.080

    Article  Google Scholar 

  21. P. Fernandez-Zelaia and S.N. Melkote, Process–Structure–Property Relationships in Bimodal Machined Microstructures Using Robust Structure Descriptors, J. Mater. Process. Technol., 2019, 273, p 116251. https://doi.org/10.1016/j.jmatprotec.2019.116251

    Article  Google Scholar 

  22. M. Ebrahimi and C. Gode, Severely Deformed Copper by Equal Channel Angular Pressing, Prog. Nat. Sci. Mater. Int., 2017, 27, p 244–250. https://doi.org/10.1016/j.pnsc.2017.03.002

    Article  CAS  Google Scholar 

  23. R. Valiev, Nanostructuring of Metallic Materials by SPD Processing for Advanced Properties, Nat. Mater., 2004, 3, p 511–516. https://doi.org/10.3139/146.110095

    Article  CAS  PubMed  Google Scholar 

  24. R.Z. Valiev and T.G. Langdon, Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement, Prog. Mater. Sci., 2006, 51, p 881–981. https://doi.org/10.1016/j.pmatsci.2006.02.003

    Article  CAS  Google Scholar 

  25. W. Guo, Q. Wang, B. Ye, X. Li, X. Liu, and H. Zhou, Microstructural Refinement and Homogenization of Mg-SiC Nanocomposites by Cyclic Extrusion Compression, Mater. Sci. Eng. A, 2012, 556, p 267–270. https://doi.org/10.1016/j.msea.2012.06.086

    Article  CAS  Google Scholar 

  26. P. Luo, D.T. Mcdonald, W. Xu, S. Palanisamy, M.S. Dargusch, and K. Xia, A Modified Hall–Petch Relationship in Ultrafine-Grained Titanium Recycled from Chips by Equal Channel Angular Pressing, Scr. Mater., 2012, 66, p 785–788. https://doi.org/10.1016/j.scriptamat.2012.02.008

    Article  CAS  Google Scholar 

  27. C. Yuhua, M. Yuqing, L. Weiwei, and H. Peng, Investigation of Welding Crack in Micro Laser Welded NiTiNb Shape Memory Alloy and Ti6Al4V Alloy Dissimilar Metals Joints, Opt. Laser Technol., 2017, 91, p 197–202. https://doi.org/10.1016/j.optlastec.2016.12.028

    Article  CAS  Google Scholar 

  28. J. Xie, Y. Chen, L. Yin, T. Zhang, S. Wang, and L. Wang, Microstructure and Mechanical Properties of Ultrasonic Spot Welding TiNi/Ti6Al4V Dissimilar Materials Using Pure Al Coating, J. Manuf. Process., 2021, 64, p 473–480. https://doi.org/10.1016/j.jmapro.2021.02.009

    Article  Google Scholar 

  29. M.H. Shaeri, M. Shaeri, M. Ebrahimi, M.T. Salehi, and S.H. Seyyedein, Effect of ECAP Temperature on Microstructure and Mechanical Properties of Al-Zn-Mg-Cu Alloy, Prog. Nat. Sci. Mater. Int., 2016 https://doi.org/10.1016/j.pnsc.2016.03.003

    Article  Google Scholar 

  30. M. Ebrahimi, S.A.N. Tiji, and F. Djavanroodi, Upper Bound Solution of Equal Channel Forward Extrusion Process as a New Severe Plastic Deformation Method, Metall. Res. Technol., 2015 https://doi.org/10.1051/metal/2015044

    Article  Google Scholar 

  31. M.M. Abramova, N.A. Enikeev, R.Z. Valiev, A. Etienne, B. Radiguet, Y. Ivanisenko, and X. Sauvage, Grain Boundary Segregation Induced Strengthening of an Ultrafine-Grained Austenitic Stainless Steel, Mater. Lett., 2014, 136, p 349–352. https://doi.org/10.1016/j.matlet.2014.07.188

    Article  CAS  Google Scholar 

  32. F. Djavanroodi, M. Ebrahimi, and J.F. Nayfeh, Tribological and Mechanical Investigation of Multi-directional Forged Nickel, Sci. Rep., 2019 https://doi.org/10.1038/s41598-018-36584-w

    Article  PubMed  PubMed Central  Google Scholar 

  33. M. Ebrahimi and Q. Wang, Accumulative Roll-Bonding of Aluminum Alloys and Composites: An Overview of Properties and Performance, J. Mater. Res. Technol., 2022, 19, p 4381–4403. https://doi.org/10.1016/j.jmrt.2022.06.175

    Article  CAS  Google Scholar 

  34. R.J. Fan, S. Attarilar, M. Shamsborhan, M. Ebrahimi, C. Göde, and H.V. Özkavak, Enhancing Mechanical Properties and Corrosion Performance of AA6063 Aluminum Alloys Through Constrained Groove Pressing technique, Trans. Nonferrous Met. Soc. China, 2020, 30, p 1790–1802. https://doi.org/10.1016/S1003-6326(20)65339-0

    Article  CAS  Google Scholar 

  35. M. Ebrahimi, Fatigue Behaviors of Materials Processed by Planar Twist Extrusion, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2017 https://doi.org/10.1007/s11661-017-4375-4

    Article  Google Scholar 

  36. D.H. Shin, J.-J. Park, Y.-S. Kim, and K.-T. Park, Constrained Groove Pressing and Its Application to Grain Refinement of Aluminum, Mater. Sci. Eng. A, 2002, 328, p 98–103. https://doi.org/10.1016/S0921-5093(01)01665-3

    Article  Google Scholar 

  37. M. Ebrahimi, S. Attarilar, F. Djavanroodi, C. Gode, and H.S. Kim, Wear Properties of Brass Samples Subjected to Constrained Groove Pressing Process, Mater. Des., 2014, 63, p 531–537. https://doi.org/10.1016/j.matdes.2014.06.043

    Article  CAS  Google Scholar 

  38. A. Sajadi, M. Ebrahimi, and F. Djavanroodi, Experimental and Numerical Investigation of Al Properties Fabricated by CGP Process, Mater. Sci. Eng. A, 2012 https://doi.org/10.1016/j.msea.2012.04.121

    Article  Google Scholar 

  39. A.K. Gupta, T.S. Maddukuri, and S.K. Singh, Constrained Groove Pressing for Sheet Metal Processing, Prog. Mater. Sci., 2016, 84, p 403–462. https://doi.org/10.1016/j.pmatsci.2016.09.008

    Article  CAS  Google Scholar 

  40. J.X. Fang, S.Y. Dong, S.B. Li, Y.J. Wang, B.S. Xu, J. Li, B. Liu, and Y.L. Jiang, Direct Laser Deposition as Repair Technology for a Low Transformation Temperature Alloy: Microstructure, Residual Stress, and Properties, Mater. Sci. Eng. A, 2019, 748, p 119–127. https://doi.org/10.1016/j.msea.2019.01.072

    Article  CAS  Google Scholar 

  41. J.X. Fang, J.X. Wang, Y.J. Wang, H.T. He, D.B. Zhang, and Y. Cao, Microstructure Evolution and Deformation Behavior During Stretching of a Compositionally Inhomogeneous TWIP-TRIP Cantor-Like Alloy by Laser Powder deposition, Mater. Sci. Eng. A, 2022, 847, p 143319. https://doi.org/10.1016/j.msea.2022.143319

    Article  CAS  Google Scholar 

  42. F. Fereshteh-Saniee, S. Ghorbanhosseini, and A. Sonboli, Inclusive Anisotropy and Texture Analyses of AZ91 Mg Sheets Subjected to Various Passes of Elevated-Temperature Constrained Groove pressing, Proc. Inst. Mech Eng. Part L J. Mater. Des. Appl., 2023, 237, p 1638–1650. https://doi.org/10.1177/14644207231152141

    Article  CAS  Google Scholar 

  43. G. Wang and L. Zhu, The Fracture Behavior and Thermal Stability of Commercially Pure Nickel Sheets Processed by Constrained Groove Pressing, Metals (Basel), 2019, 9, p 1047. https://doi.org/10.3390/met9101047

    Article  CAS  Google Scholar 

  44. M. Akhil Sharma, C. Shravan Kumar, M. Nithin Kunal Reddy, and B. Tanya, Study on Mechanical Properties of AZ31-Mg Alloy and Effect of Deformation Using Constrained Groove pressing–A Review Paper, Mater. Today Proc., 2022, 62, p 4463–4468. https://doi.org/10.1016/j.matpr.2022.04.935

    Article  CAS  Google Scholar 

  45. S. Sama, S. Babbepalli, A. Budime, and T. Buddi, The Study of Mechanical and Microstructural Properties of the AZ31 Magnesium Alloy Using Constrained Groove Pressing at Elevated Temperature: A Review, Mater. Today Proc., 2022, 62, p 3429–3434. https://doi.org/10.1016/j.matpr.2022.04.275

    Article  CAS  Google Scholar 

  46. S. Kumar, Developing Methods of Constrained Groove Pressing Technique: A Review, Proc. Inst. Mech Eng. Part L J. Mater. Des. Appl., 2023, 237, p 1319–1346. https://doi.org/10.1177/14644207221143358

    Article  Google Scholar 

  47. Z. Wang, Y. Guan, T. Wang, Q. Zhang, X. Wei, X. Fang, G. Zhu, and S. Gao, Microstructure and Mechanical Properties of AZ31 Magnesium Alloy Sheets Processed by Constrained Groove Pressing, Mater. Sci. Eng. A, 2019, 745, p 450–459. https://doi.org/10.1016/j.msea.2019.01.006

    Article  CAS  Google Scholar 

  48. Q. Yang and A.K. Ghosh, Production of Ultrafine-Grain Microstructure in Mg Alloy by Alternate Biaxial Reverse Corrugation, Acta Mater., 2006, 54, p 5147–5158. https://doi.org/10.1016/j.actamat.2006.06.045

    Article  CAS  Google Scholar 

  49. Q. Huo, X. Yang, H. Sun, B. Li, J. Qin, J. Wang, and J. Ma, Enhancement of Tensile Ductility and Stretch Formability of AZ31 Magnesium Alloy Sheet Processed by Cross-Wavy Bending, J. Alloys Compd., 2013, 581, p 230–235. https://doi.org/10.1016/j.jallcom.2013.06.185

    Article  CAS  Google Scholar 

  50. X. Yang, Z. Sun, J. Xing, H. Miura, and T. Sakai, Grain Size and Texture Changes of Magnesium Alloy AZ31 During Multi-directional Forging, Trans. Nonferrous Met. Soc. China, 2008, 18, p s200–s204. https://doi.org/10.1016/S1003-6326(10)60202-6

    Article  CAS  Google Scholar 

  51. M. Janeček, M. Popov, M.G. Krieger, R.J. Hellmig, and Y. Estrin, Mechanical Properties and Microstructure of a Mg Alloy AZ31 Prepared by Equal-Channel Angular Pressing, Mater. Sci. Eng. A, 2007, 462, p 116–120. https://doi.org/10.1016/j.msea.2006.01.174

    Article  CAS  Google Scholar 

  52. S.M. Masoudpanah and R. Mahmudi, Effects of Rare-Earth Elements and Ca Additions on the Microstructure and Mechanical Properties of AZ31 Magnesium Alloy Processed by ECAP, Mater. Sci. Eng. A, 2009, 526, p 22–30. https://doi.org/10.1016/j.msea.2009.08.027

    Article  CAS  Google Scholar 

  53. M. Zimina, J. Bohlen, D. Letzig, G. Kurz, M. Cieslar, and J. Zník, The Study of Microstructure and Mechanical Properties of Twin-Roll Cast AZ31 Magnesium Alloy After Constrained Groove Pressing, IOP Conf. Ser. Mater. Sci. Eng., 2014, 63, p 012078. https://doi.org/10.1088/1757-899X/63/1/012078

    Article  CAS  Google Scholar 

  54. Z. Wang, K. Wang, X. Wang, T. Wang, L. Zhu, and Y. Guan, Warm Tensile Deformation and Fracture Behavior of AZ31 Magnesium Alloy Sheets Processed by Constrained Groove Pressing, J. Mater. Eng. Perform., 2020, 29, p 7662–7677. https://doi.org/10.1007/s11665-020-05220-y

    Article  CAS  Google Scholar 

  55. P.T. Thuy, D.T.H. Hue, D.M. Ngung, and P. Quang, A Study on Microstructure and Mechanical Properties of AZ31 Magnesium Alloy after Constrained Groove Pressing, IOP Conf. Ser. Mater. Sci. Eng., 2019, 611, p 012005. https://doi.org/10.1088/1757-899X/611/1/012005

    Article  CAS  Google Scholar 

  56. P. Lin, T. Tang, Z. Zhao, W. Wang, and C. Chi, Refinement Strengthening of AZ31 Magnesium Alloy by Warm Constrained Groove Pressing, Mater. Sci., 2017 https://doi.org/10.5755/j01.ms.23.1.14392

    Article  Google Scholar 

  57. K. Soon Fong, M. Jen Tan, F. Lan Ng, A. Danno, and B. Wah Chua, Microstructure Stability of a Fine-Grained AZ31 Magnesium Alloy Processed by Constrained Groove Pressing During Isothermal Annealing, J. Manuf. Sci. Eng., 2017 https://doi.org/10.1115/1.4036529

    Article  Google Scholar 

  58. Q. Wang, Y. Mu, J. Lin, L. Zhang, and H.J. Roven, Strengthening and Toughening Mechanisms of an Ultrafine Grained Mg-Gd-Y-Zr Alloy Processed by Cyclic Extrusion and Compression, Mater. Sci. Eng. A, 2017, 699, p 26–30. https://doi.org/10.1016/j.msea.2017.05.080

    Article  CAS  Google Scholar 

  59. B. Sułkowski, M. Janoska, G. Boczkal, R. Chulist, M. Mroczkowski, and P. Pałka, The Effect of Severe Plastic Deformation on the Mg Properties After CEC Deformation, J. Magnes. Alloy., 2020, 8, p 761–768. https://doi.org/10.1016/j.jma.2020.04.005

    Article  CAS  Google Scholar 

  60. P. Mansoor and S.M. Dasharath, Microstructural and Mechanical Properties of Magnesium Alloy Processed by Severe Plastic Deformation (SPD)-A Review, Mater. Today Proc., 2020, 20, p 145–154. https://doi.org/10.1016/j.matpr.2019.10.088

    Article  CAS  Google Scholar 

  61. I.J. Beyerlein and L.S. Tóth, Texture Evolution in Equal-Channel Angular Extrusion, Prog. Mater. Sci., 2009, 54, p 427–510. https://doi.org/10.1016/j.pmatsci.2009.01.001

    Article  CAS  Google Scholar 

  62. S. Yi, J. Bohlen, F. Heinemann, and D. Letzig, Mechanical Anisotropy and Deep Drawing Behaviour of AZ31 and ZE10 Magnesium Alloy Sheets, Acta Mater., 2010, 58, p 592–605. https://doi.org/10.1016/j.actamat.2009.09.038

    Article  CAS  Google Scholar 

  63. A. Rollett, F. Humphreys, G.S. Rohrer, and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed. Elsevier, 2004. https://doi.org/10.1016/B978-0-08-044164-1.X5000-2

    Book  Google Scholar 

  64. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Progress in Materials Science Dynamic and Post-Dynamic Recrystallization Under Hot, Cold and Severe Plastic Deformation Conditions, J. Prog. Mater. Sci., 2014, 60, p 130–207. https://doi.org/10.1016/j.pmatsci.2013.09.002

    Article  CAS  Google Scholar 

  65. M.R. Barnett, A Taylor Model Based Description of the Proof Stress of Magnesium AZ31 During Hot Working, Metall. Mater. Trans. A, 2003, 34, p 1799–1806. https://doi.org/10.1007/s11661-003-0146-5

    Article  Google Scholar 

  66. Q. Ma, B. Li, E.B. Marin, and S.J. Horstemeyer, Twinning-Induced Dynamic Recrystallization in a Magnesium Alloy Extruded at 450°C, Scr. Mater., 2011, 65, p 823–826. https://doi.org/10.1016/j.scriptamat.2011.07.046

    Article  CAS  Google Scholar 

  67. É. Martin and J.J. Jonas, Evolution of Microstructure and Microtexture During the Hot Deformation of Mg–3% Al, Acta Mater., 2010, 58, p 4253–4266. https://doi.org/10.1016/j.actamat.2010.04.017

    Article  CAS  Google Scholar 

  68. L. Jiang, J.J. Jonas, R.K. Mishra, A.A. Luo, A.K. Sachdev, and S. Godet, Twinning and Texture Development in Two Mg Alloys Subjected to Loading Along Three Different Strain Paths, Acta Mater., 2007, 55, p 3899–3910. https://doi.org/10.1016/j.actamat.2007.03.006

    Article  CAS  Google Scholar 

  69. N.V. Dudamell, I. Ulacia, F. Gálvez, S. Yi, J. Bohlen, D. Letzig, I. Hurtado, and M.T. Pérez-Prado, Influence of Texture on the Recrystallization Mechanisms in an AZ31 Mg Sheet Alloy at Dynamic rates, Mater. Sci. Eng. A, 2011 https://doi.org/10.1016/j.msea.2011.11.018

    Article  Google Scholar 

  70. A.S. Khan, A. Pandey, T. Gnäupel-Herold, and R.K. Mishra, Mechanical Response and Texture Evolution of AZ31 Alloy at Large Strains for Different Strain Rates and Temperatures, Int. J. Plast., 2011, 27, p 688–706. https://doi.org/10.1016/j.ijplas.2010.08.009

    Article  CAS  Google Scholar 

  71. J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, and K. Higashi, The Activity of Non-basal Slip Systems and Dynamic Recovery at Room Temperature in Fine-Grained AZ31B Magnesium Alloys, Acta Mater., 2003, 51, p 2055–2065. https://doi.org/10.1016/S1359-6454(03)00005-3

    Article  CAS  Google Scholar 

  72. M.R. Barnett, M.D. Nave, and A. Ghaderi, Yield Point Elongation due to Twinning in a Magnesium Alloy, Acta Mater., 2012, 60, p 1433–1443. https://doi.org/10.1016/j.actamat.2011.11.022

    Article  CAS  Google Scholar 

  73. W.F. Hosford and R.M. Caddell, Metal Forming, Cambridge University Press, 2007. https://doi.org/10.1017/CBO9780511811111

    Book  Google Scholar 

  74. D.N. Lee, Relation Between Limiting Drawing Ratio and Plastic Strain Ratio, J. Mater. Sci. Lett., 1984, 3, p 677–680. https://doi.org/10.1007/BF00719921

    Article  CAS  Google Scholar 

  75. X. Huang, K. Suzuki, A. Watazu, I. Shigematsu, and N. Saito, Improvement of Formability of Mg–Al–Zn alloy Sheet at Low Temperatures Using Differential Speed Rolling, J. Alloys Compd., 2009, 470, p 263–268. https://doi.org/10.1016/j.jallcom.2008.02.029

    Article  CAS  Google Scholar 

  76. P.R. Tiwari, A. Rathore, and M.G. Bodkhe, Factors Affecting the Deep Drawing Process–A Review, Mater. Today Proc., 2021 https://doi.org/10.1016/j.matpr.2021.10.189

    Article  PubMed  PubMed Central  Google Scholar 

  77. Y.S. Lee, Y.N. Kwon, S.H. Kang, S.W. Kim, and J.H. Lee, Forming Limit of AZ31 Alloy Sheet and Strain Rate on Warm Sheet Metal Forming, J. Mater. Process. Technol., 2008, 201, p 431–435. https://doi.org/10.1016/j.jmatprotec.2007.11.306

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the Xuzhou Urbanization Renju Environment Design Engineering Technology Research Center of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Yu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L. Microstructural Evolution and Mechanical Properties of AZ31 Magnesium Alloy Processed through Constrained Groove Pressing at Different Deformations and Temperatures. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-023-09102-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-09102-x

Keywords

Navigation