Skip to main content
Log in

Quantitative Analysis of Codeformation Behavior of Ceramic and Metallic Particle System

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Deformation processing techniques (cold rolling, extrusion and drawing) are used as main manufacturing methods at both industrial and laboratory level—especially for metallic components. Cold working triggers several microstructural phenomena which eventually assist strain-induced strengthening. Recently, deformation processing has extended from conventional strengthening method to a strategic step in fabrication of state-of-the-art modern composites. For example, the in situ synthesis of new improved phases using powder metallurgy requires the powder particles to be arranged in a favorable position, so that the phase synthesis could initiate. This study investigates the codeformation aspects of ceramic (B4C, 1-7 µm) and metallic (Fe, 45 µm) microparticle mixtures (Fe-5, 10 and 15 vol.% B4C), when they are subjected to cold rolling (η = 0.82, 1.24, 1.79, 2.10 and 3.10). While on the one side the inter-particle physical interactions are complemented upon, a methodology is also developed for dealing with deformation-induced microstructural phenomena of the powder mixtures. Results showed that while cold working induces irreversible morphological changes in the Fe particles, the presence of B4C ceramic particles becomes significant only at higher deformation levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. H.M.N. Zafar and F. Nair, Deformation Processed High Strength High Conductivity Cu and Al Matrix Composite Wires: An Introductory Review, Proc. Inst. Mech. Eng. L-J MAT, 2022, 236, p 1927–1948. https://doi.org/10.1177/14644207221090534

    Article  CAS  Google Scholar 

  2. D. Raabe, Deformation Processing, Encyclopedia of Condensed Matter Physics. F. Bassani, G.L. Liedl, P. Wyder Ed., Elsevier, Oxford, 2005, p 387–395

    Chapter  Google Scholar 

  3. P. Rokebrand and I. Sigalas, Fe-B-C Composites Produced Using Spark Plasma Sintering, Int. J. Refract. Hard Met., 2015, 49, p 320–326. https://doi.org/10.1016/j.ijrmhm.2014.07.039

    Article  CAS  Google Scholar 

  4. M. Fattahi et al., Strengthening of Novel TiC-AlN Ceramic with in-situ Synthesized Ti3Al Intermetallic Compound, Ceram. Int., 2020, 46, p 14105–14113. https://doi.org/10.1016/j.ceramint.2020.02.213

    Article  CAS  Google Scholar 

  5. I. Montealegre-Melendez et al., Analysis of the Microstructure and Mechanical Properties of Titanium-Based Composites Reinforced by Secondary Phases and B4C Particles Produced via Direct Hot Pressing, Materials, 2017, 10, p 1240. https://doi.org/10.3390/ma10111240

    Article  CAS  Google Scholar 

  6. V.S. Balaji and S. Kumaran, Densification and Microstructural Studies of Titanium–Boron Carbide (B4C) Powder Mixture During Spark Plasma Sintering, Powder Technol., 2014, 264, p 536–540. https://doi.org/10.1016/j.powtec.2014.05.050

    Article  CAS  Google Scholar 

  7. I. Schramm Deschamps et al., Design of In Situ Metal Matrix Composites Produced by Powder Metallurgy—A Critical Review, Metals, 2022, 12, p 1–61. https://doi.org/10.3390/met12122073

    Article  CAS  Google Scholar 

  8. Czahor, C.F., Anderson, I.E., Riedemann, T.M., and Russell, A.M. Deformation processed Al/Ca nano-filamentary composite conductors for HVDC applications. in 38th Riso International Symposium on Materials Science. Denmark: IOP Publishing. (2017)

  9. Y.V. Turov et al., Structure Formation in Sintering Iron-Boron Carbide Powder Composite, Powder Metall. Met. Ceram., 1991, 30, p 465–470. https://doi.org/10.1007/BF00795069

    Article  Google Scholar 

  10. V. Vassileva et al., The Role of the Atmosphere on Boron-Activated Sintering of Ferrous Powder Compacts, Powder Metall. Prog., 2018, 18, p 6–20. https://doi.org/10.1515/pmp-2018-0002

    Article  CAS  Google Scholar 

  11. S. Sahin, C. Meric and S. Saritas, Production of Ferroboron Powders by Solid Boronizing Method, Adv. Powder Technol., 2010, 21, p 483–487. https://doi.org/10.1016/j.apt.2010.01.011

    Article  CAS  Google Scholar 

  12. M. Sułowski, P. Kulecki, E. Lichańska and A. Radziszewska, Fractography and Porosity Analysis of Cr and Cr-Mo PM Steels, Arch. Metall. Mater., 2016, 61, p 1613–1622. https://doi.org/10.1515/amm-2016-0263

    Article  CAS  Google Scholar 

  13. R.M. German, P. Suri and S.J. Park, Review: Liquid Phase Sintering, J. Mater. Sci., 2009, 44, p 1–39. https://doi.org/10.1007/s10853-008-3008-0

    Article  CAS  Google Scholar 

  14. H.M.N. Zafar and F. Nair, Fabrication and Microscale Characterization of Iron Matrix Composite Wires Reinforced by in situ Synthesized Iron Boride Phases, Arab. J. Sci. Eng., 2022, 48, p 3909–3930. https://doi.org/10.1007/s13369-022-07320-4

    Article  CAS  Google Scholar 

  15. Y.V. Turov et al., Gas Transport Processes in Sintering of an Iron-Boron Carbide Powder Composite, Sov. Powder Metall. Met. Ceram., 1989, 28, p 618–622. https://doi.org/10.1007/BF00794577

    Article  Google Scholar 

  16. J.M.C. Azevedo, A.C. Serrenho and J.M. Allwood, The Deformation of Metal Powder Particles: Hardness and Microstructure, Procedia Eng., 2017, 207, p 1200–1205. https://doi.org/10.1016/j.proeng.2017.10.870

    Article  Google Scholar 

  17. N.A. Fleck, On the Cold Compaction of Powders, J. Mech. Phys. Solids, 1995, 43, p 1409–1431. https://doi.org/10.1016/0022-5096(95)00039-L

    Article  CAS  Google Scholar 

  18. D. Ramírez-Vinasco, C.A. León-Patiño, E.A. Aguilar-Reyes and G. Rodríguez-Ortiz, Compressibility Behaviour of Conventional AlN-Cu Mixtures and Cu-(AlN-Cu) Composite Powder Mixtures, Powder Technol., 2022, 403, p 117385. https://doi.org/10.1016/j.powtec.2022.117385

    Article  CAS  Google Scholar 

  19. L. He and E. Ma, Processing and Microhardness of bulk Cu-Fe Nanocomposites, Nanostruct. Mater., 1996, 7, p 327–339. https://doi.org/10.1016/0965-9773(96)00003-7

    Article  CAS  Google Scholar 

  20. E.Y. Nzoma, A. Guillet and P. Pareige, Nanostructured Multifilamentary Carbon-Copper Composites: Fabrication, Microstructural Characterization, and Properties, J. Nanomater., 2012, 2012, p 44. https://doi.org/10.1155/2012/360818

    Article  CAS  Google Scholar 

  21. J.B. Dubois, L. Thilly, P.O. Renault and F. Lecouturier, Cu-Nb Nanocomposite Wires Processed by Severe Plastic Deformation: Effects of the Multi-Scale Microstructure and Internal Stresses on Elastic-Plastic Properties, Adv. Eng. Mater., 2012, 14, p 998–1003. https://doi.org/10.1002/adem.201200033

    Article  CAS  Google Scholar 

  22. V. Vidal, L. Thilly, F. Lecouturier and P.O. Renault, Effects of Size and Geometry on the Plasticity of High-Strength Copper/Tantalum Nanofilamentary Conductors Obtained by Severe Plastic Deformation, Acta Mater., 2006, 54, p 1063–1075. https://doi.org/10.1016/j.actamat.2005.10.031

    Article  CAS  Google Scholar 

  23. T. Gu et al., Multiscale Modeling of the Anisotropic Electrical Conductivity of Architectured and Nanostructured Cu-Nb Composite Wires and Experimental Comparison, Acta Mater., 2017, 141, p 131–141. https://doi.org/10.1016/j.actamat.2017.08.066

    Article  CAS  Google Scholar 

  24. A.B. Rozhnov et al., Low-Cycle Bending Fatigue and Electrical Conductivity of High-Strength Cu/Nb Nanocomposite Wires, Int. J. Fatigue, 2019, 128, p 105188. https://doi.org/10.1016/j.ijfatigue.2019.105188

    Article  CAS  Google Scholar 

  25. A.Y. Volkov et al., Abnormally High Strength and Low Electrical Resistivity of the Deformed Cu/Mg-Composite with a Big Number of Mg-filaments, Mater. Des., 2020, 185, p 108276. https://doi.org/10.1016/j.matdes.2019.108276

    Article  CAS  Google Scholar 

  26. F. Moisy et al., Influence of Intermetallic Compounds on the Electrical Resistivity of Architectured Copper Clad Aluminum Composites Elaborated by a Restacking Drawing Method, Mater. Des., 2018, 155, p 366–374. https://doi.org/10.1016/j.matdes.2018.06.021

    Article  CAS  Google Scholar 

  27. L. Tian, H. Kim, I. Anderson and A. Russell, The Microstructure-Strength Relationship in a Deformation Processed Al-Ca Composite, Mater. Sci. Eng. C, 2013, 570, p 106–113. https://doi.org/10.1016/j.msea.2013.01.062

    Article  CAS  Google Scholar 

  28. L. Tian et al., A Deformation-Processed Al-matrix/Ca-nanofilamentary Composite with Low Density, High Strength, and High Conductivity, Mater. Sci. Eng. C, 2017, 690, p 348–354. https://doi.org/10.1016/j.msea.2017.03.010

    Article  CAS  Google Scholar 

  29. K. Xu et al., Characterization of Strength and Microstructure in Deformation Processed Al-Mg Composites, J. Mater. Sci., 1999, 34, p 5955–5959. https://doi.org/10.1023/a:1004772526480

    Article  CAS  Google Scholar 

  30. A.M. Russell et al., A High-Strength, High-Conductivity Al-Ti Deformation Processed Metal Metal Matrix Composite, Compos. Part A Appl., 1999, 30, p 239–247. https://doi.org/10.1016/S1359-835X(98)00163-8

    Article  Google Scholar 

  31. K. Xu, K. Wongpreedee and A.M. Russell, Microstructure and Strength of a Deformation Processed Al-20%Sn in situ Composite, J. Mater. Sci., 2002, 37, p 5209–5214. https://doi.org/10.1023/A:1021092001147

    Article  CAS  Google Scholar 

  32. V.F. Tkachenko and Y.I. Kogan, Structural Characteristics and Mechanical Properties of Sintered Fe-B4C Materials, Sov. Powder Metall. Met. Ceram., 1978, 17, p 384–388. https://doi.org/10.1007/BF00795022

    Article  Google Scholar 

  33. S. Guk, W. Müller, K. Pranke and R. Kawalla, Mechanical Behaviour Modelling of an Mg-Stabilized Zirconia Reinforced TRIP-Matrix-Composite Under Cold Working Conditions, Mater. Sci. Appl., 2014, 5, p 812. https://doi.org/10.4236/msa.2014.511081

    Article  CAS  Google Scholar 

  34. F. Nair and M. Hamamcı, Effect of In-Situ Synthesized Boride Phases on the Impact Behavior of Iron-Based Composites Reinforced by B4C Particles, Metals, 2020, 10, p 1–22. https://doi.org/10.3390/met10050554

    Article  CAS  Google Scholar 

  35. W. Zhang, A Review of Tribological Properties for Boron Carbide Ceramics, Prog. Mater. Sci., 2021, 116, p 100718. https://doi.org/10.1016/j.pmatsci.2020.100718

    Article  CAS  Google Scholar 

  36. W. Zhang, S. Yamashita and H. Kita, Progress in Pressureless Sintering of Boron Carbide Ceramics—A Review, Adv. Appl. Ceram., 2019, 118, p 222–239. https://doi.org/10.1080/17436753.2019.1574285

    Article  CAS  Google Scholar 

  37. P.H. Shipway and I.M. Hutchings, The Influence of Particle Properties on the Erosive Wear of Sintered Boron Carbide, Wear, 1991, 149, p 85–98. https://doi.org/10.1016/0043-1648(91)90366-3

    Article  CAS  Google Scholar 

  38. D. Raabe, F. Heringhaus, U. Hangen and G. Gottstein, Investigation of a Cu-20 Mass% Nb in situ Composite Pt 1 Fabrication, Microstructure and Mechanical Properties, Int. J. Mater. Res., 1995, 86, p 405–415. https://doi.org/10.1515/ijmr-1995-860606

    Article  CAS  Google Scholar 

  39. V.I. Pantsyrny et al., Thermal Stability of the High Strength High Conductivity Cu-Nb, Cu-V, and Cu-Fe Nanostructured Microcomposite Wires, IEEE Trans. Appl. Supercond., 2014, 24, p 1–4. https://doi.org/10.1109/TASC.2013.2293655

    Article  Google Scholar 

  40. J.D. Verhoeven et al., Development of Deformation Processed Copper-Refractory Metal Composite Alloys, J. Mater. Eng., 1990, 12, p 127–139. https://doi.org/10.1007/bf02834066

    Article  CAS  Google Scholar 

  41. D. Farkas et al., Image Analysis: A Versatile Tool in the Manufacturing and Quality Control of Pharmaceutical Dosage Forms, Pharmaceutics, 2021, 13, p 1–22. https://doi.org/10.3390/pharmaceutics13050685

    Article  CAS  Google Scholar 

  42. S.M. Hartig, Basic Image Analysis and Manipulation in ImageJ, Curr. Protoc. Mol. Biol., 2013, 102, p 14–15. https://doi.org/10.1002/0471142727.mb1415s102

    Article  Google Scholar 

  43. T. Zheng, K. Yang and X. Wang, Quick Measurement of all Filaments’ Diameters in E-glass Yarn by Image-Pro Plus, J. Ind. Text., 2022, 51, p 1376–1396. https://doi.org/10.1177/152808371990

    Article  Google Scholar 

  44. L. Deng et al., Effects of Interface Area Density and Solid Solution on the Microhardness of Cu-Nb Microcomposite Wires, Mater Charact, 2019, 150, p 62–66. https://doi.org/10.1016/j.matchar.2019.02.002

    Article  CAS  Google Scholar 

  45. D.A. Hardwick, C.G. Rhodes and L.G. Fritzemeier, The Effect of Annealing on the Microstructure and Mechanical Properties of Cu-X Microcomposites, Metall. Trans. A, 1993, 24, p 27–34. https://doi.org/10.1007/bf02669599

    Article  Google Scholar 

  46. Marte, J.S., Zahrah, T., and Kampe, S.L. In Situ Multilithic Metal Matrix Composites Produced by Codeformation Processing. in 4th International Conference on Processing and Manufacturing of Advanced Materials. 2003. Barcelona, Spain: MDPI.

Download references

Funding

This study did not receive any funding.

Author information

Authors and Affiliations

Authors

Contributions

FN was involved in materials and experimental setup preparation, resources and supervision. HMNZ was responsible for conceptualization, data curation, manuscript preparation, validation and visualization.

Corresponding author

Correspondence to Hafız Muhammad Numan Zafar.

Ethics declarations

Conflict of interests

The authors confirm that they have no financial or non-financial competing interests associated with the publication of this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zafar, H.M.N., Nair, F. Quantitative Analysis of Codeformation Behavior of Ceramic and Metallic Particle System. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-09038-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-09038-2

Keywords

Navigation