Skip to main content
Log in

The Role of Manufacturing Techniques in Reciprocating Wear of Carbide-Reinforced Ni-Co-Cr-Mo-Cu Alloys

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Finding the correlation among manufacturing process, microstructure and mechanical properties is critical to design the high-performance alloy. In this study, room temperature ball-on-flat dry sliding wear behavior of carbide-reinforced Ni-Co-Cr-Mo-Cu alloys prepared by hot isostatic pressing (HIP) and hot extrusion (HEX) against Al2O3 ball were investigated. Carbides in the HIP alloy are fine, nearly spherical and have a higher area fraction, in comparison with HEX alloy. Abrasive wear dominates under 10 N load condition, large-sized carbides in HEX alloy display a better resistance to HIP alloy. Oxidative wear dominates under 30 and 50 N load condition, the nearly spherical carbides in the HIP alloy form a stable mixed glaze layer with the fully oxidized alloy surface, lower coefficient of friction (COF) and wear rate were obtained in comparison with HEX alloy. The significant decrease in the wear rate of Al2O3 against HIP alloys under 30 and 50 N load condition is due to the lubricating effect of the oxide glaze layer. The wear rate of the Al2O3 against the HEX alloys almost unchanged due to the insufficient lubrication. It is speculated that the absence of the glaze layer in the HEX alloy is due to the irregular shape of its carbides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S.Y. Persaud, A. Korinek, J. Huang, G.A. Botton, and R.C. Newman, Internal Oxidation of Alloy 600 Exposed to Hydrogenated Steam and the Beneficial Effects of Thermal Treatment, Corros. Sci., 2014, 86, p 108–122. https://doi.org/10.1016/j.corsci.2014.04.041

    Article  CAS  Google Scholar 

  2. Y. Hou, Y. Li, E. Onodera, C. Zhang, Y. Koizumi, and A. Chiba, Ex-Situ Observation on the Dissolution Behaviour of Ni-16Cr-15Mo and Ni-30Co-16Cr-15Mo alloys in Hydrofluoric Acid, Corros. Sci., 2015, 90, p 133–139. https://doi.org/10.1016/j.corsci.2014.10.003

    Article  CAS  Google Scholar 

  3. B. Yang, C. Shi, J. Teng, X. Gong, X. Ye, Y. Li, Q. Lei, and Y. Nie, Corrosion Behaviours of Low Mo Ni-(Co)-Cr-Mo Alloys with Various Contents of Co in HF Acid Solution, J. Alloy. Compd., 2019, 791, p 215–224. https://doi.org/10.1016/j.jallcom.2019.03.325

    Article  CAS  Google Scholar 

  4. A.C. Lloyd, J.J. Noël, S. McIntyre, and D.W. Shoesmith, Cr, Mo and W Alloying Additions in Ni and their Effect on Passivity, Electrochim. Acta, 2004, 49, p 3015–3027. https://doi.org/10.1016/j.electacta.2004.01.061

    Article  CAS  Google Scholar 

  5. J.R. Hayes, J.J. Gray, A.W. Szmodis, and C.A. Orme, Influence of Chromium and Molybdenum on the Corrosion of Nickel-Based Alloys, Corrosion, 2006, 62, p 491–500. https://doi.org/10.5006/1.3279907

    Article  CAS  Google Scholar 

  6. B. Yang, C. Shi, J. Teng, Q. Lei, Y. Nie, and Y. Li, Influence of Co Addition on the Deformation Behavior and Mechanical Properties of Ni-16Cr-11Mo-2Cu Alloy, Mater. Sci. Eng. A, 2019, 767, p 138442. https://doi.org/10.1016/j.msea.2019.138442

    Article  CAS  Google Scholar 

  7. B. Yang, J. Li, X. Gong, Y. Nie, and Y. Li, Effects of Cu Addition on the Corrosion Behavior of NiCoCrMo Alloys in Neutral Chloride Solution, RSC Adv., 2017, 7, p 40779–40790. https://doi.org/10.1039/C7RA05617F

    Article  CAS  Google Scholar 

  8. B. Yang, C. Shi, Y. Li, Q. Lei, and Y. Nie, Effect of Cu on the Corrosion Resistance and Electrochemical Response of a Ni-Co-Cr-Mo Alloy in Acidic Chloride Solution, J. Mater. Res., 2018, 33, p 3801–3808. https://doi.org/10.1557/jmr.2018.271

    Article  CAS  Google Scholar 

  9. B. Yang, Y. Hou, Q. Lei, Y. Li, and A. Chiba, Influence of Cu Addition on Corrosion Behavior and Tensile Performance of Ni-30Co-16Cr-15Mo-6Fe Alloy, Mater Charact, 2020, 161, p 110140. https://doi.org/10.1016/j.matchar.2020.110140

    Article  CAS  Google Scholar 

  10. B. Yang, Y. Hou, Y. Li, and A. Chiba, Roles of Mo and Cu on Electrochemical Behaviors of Ni-Base Alloys in Hydrofluoric Acid Solution, J. Electrochem. Soc., 2020, 167, p 101502. https://doi.org/10.1149/1945-7111/ab98ab

    Article  CAS  Google Scholar 

  11. L. Gu, J. Huang, and C. Xie, Effects of Carbon Content on Microstructure and Properties of WC-20Co Cemented Carbides, Int. J. Refract Metal Hard Mater., 2014, 42, p 228–232. https://doi.org/10.1016/j.ijrmhm.2013.09.010

    Article  CAS  Google Scholar 

  12. M.R. Fernández, A. García, J.M. Cuetos, R. González, A. Noriega, and M. Cadenas, Effect of Actual WC Content on the Reciprocating Wear of a Laser Cladding NiCrBSi Alloy Reinforced with WC, Wear, 2015, 324–325, p 80–89. https://doi.org/10.1016/j.wear.2014.12.021

    Article  CAS  Google Scholar 

  13. G. Cui, J. Han, and G. Wu, High-temperature wear Behavior of Self-Lubricating Co Matrix Alloys Prepared by P/M, Wear, 2016, 346–347, p 116–123. https://doi.org/10.1016/j.wear.2015.11.009

    Article  CAS  Google Scholar 

  14. A. Viat, G. Guillonneau, S. Fouvry, G. Kermouche, S. Sao Joao, J. Wehrs, J. Michler, and J.F. Henne, Brittle to Ductile Transition of Tribomaterial in Relation to Wear Response at High Temperatures, Wear, 2017, 15(392), p 60–68. https://doi.org/10.1016/j.wear.2017.09.015

    Article  CAS  Google Scholar 

  15. H. Zhou, P. Yao, T. Gong, Y. Xiao, Z. Zhang, L. Zhao, K. Fan, and M. Deng, Effects of ZrO2 Crystal Structure on the Tribological Properties of Copper Metal Matrix Composites, Tribol. Int., 2019, 138, p 380–391. https://doi.org/10.1016/j.triboint.2019.06.005

    Article  CAS  Google Scholar 

  16. M. Elhefnawey, G.L. Shuai, Z. Li, M. Nemat-Alla, D.T. Zhang, and L. Li, On Dry Sliding Wear of ECAPed Al-Mg-Zn Alloy: Wear Rate and Coefficient of Friction Relationship, Alex. Eng. J., 2021, 60, p 927–939. https://doi.org/10.1016/j.aej.2020.10.021

    Article  Google Scholar 

  17. C. Carboga, B. Aktas, and B. Kurt, Dry Sliding Wear Behavior of Boron-Doped 205 Manganese Steels, J. Mate. Eng. Perform., 2020, 29, p 3120–3126. https://doi.org/10.1007/s11665-020-04796-9

    Article  CAS  Google Scholar 

  18. B. Aktas, V. Balak, and C. Carboga, Dry Sliding Wear Behavior of Boron-Doped AISI 1020 Steels, Acta Phys. Pol. A., 2017, 132, p 455–457. https://doi.org/10.12693/APhysPolA.132.455

    Article  CAS  Google Scholar 

  19. B. Aktaş, M. Toprak, A. Çalık, and A. Tekgüler, Effect of Pack-Boriding on the Tribological Behavior of Hardox 450 and HiTuf Steels, Rev. Adv. Mater. Sci., 2020, 59, p 314–321. https://doi.org/10.1515/rams-2020-0030

    Article  CAS  Google Scholar 

  20. E. Pagounis, V.K. Lindroos, and M. Talvitie, Influence of Reinforcement Volume Fraction and Size on the Microstructure and Abrasion Wear Resistance of Hot Isostatic Pressed White Iron Matrix Composites, MMTA., 1996, 27, p 4171–4181. https://doi.org/10.1007/BF02595665

    Article  Google Scholar 

  21. C. Rodenburg and W.M. Rainforth, A Quantitative Analysis of the Influence of Carbides Size Distributions on Wear Behaviour of High-Speed Steel in Dry Rolling/Sliding Contact, Acta Mater., 2007, 55, p 2443–2454. https://doi.org/10.1016/j.actamat.2006.11.039

    Article  CAS  Google Scholar 

  22. Y.P. Ji, S.J. Wu, L.J. Xu, Y. Li, and S.Z. Wei, Effect of Carbon Contents on Dry Sliding Wear Behavior of High Vanadium High Speed Steel, Wear, 2012, 294–295, p 239–245. https://doi.org/10.1016/j.wear.2012.07.003

    Article  CAS  Google Scholar 

  23. S. Pawar, A.K. Jha, and G. Mukhopadhyay, Effect of Different Carbides on the Wear Resistance of Fe-Based Hardfacing Alloys, Int. J. Refract Metal Hard Mater., 2019, 78, p 288–295. https://doi.org/10.1016/j.ijrmhm.2018.10.014

    Article  CAS  Google Scholar 

  24. O.A. Zambrano and J.J. Jiang, The Effect of VC Content on the Scouring Erosion Resistance of Tool Steels, Wear, 2023, 520–521, p 204669. https://doi.org/10.1016/j.wear.2023.204669

    Article  CAS  Google Scholar 

  25. C. Raahgini and D. Verdi, Abrasive Wear Performance of Laser Cladded Inconel 625 Based Metal Matrix Composites: Effect of the Vanadium Carbide Reinforcement Phase Content, Surf. Coat. Technol., 2022, 429, p 127975. https://doi.org/10.1016/j.surfcoat.2021.127975

    Article  CAS  Google Scholar 

  26. H. Song, J. Zhang, X. Song, Z. Gu, J. Lei, and J. Xie, Microstructure and Friction Properties of GNP/Ni-Based Superalloy Composite Coating by Laser Melting Deposition, Appl. Surf. Sci., 2021, 541, p 148492. https://doi.org/10.1016/j.apsusc.2020.148492

    Article  CAS  Google Scholar 

  27. Q. Han, Y. Gu, H. Gu, Y. Yin, J. Song, Z. Zhang, and S. Soe, Laser Powder Bed Fusion of WC-Reinforced Hastelloy-X Composite: Microstructure and Mechanical Properties, J. Mater. Sci., 2021, 56, p 1768–1782. https://doi.org/10.1007/s10853-020-05327-6

    Article  CAS  Google Scholar 

  28. M.L. Sushko, D.K. Schreiber, K.M. Rosso, and S.M. Bruemmer, Role of Cr-rich Carbide Precipitates in the Intergranular Oxidation of Ni-Cr Alloys, Scripta Mater., 2018, 156, p 51–54. https://doi.org/10.1016/j.scriptamat.2018.07.016

    Article  CAS  Google Scholar 

  29. J. Krell, A. Röttger, U. Ziesing, and W. Theisen, Influence of Precipitation Hardening on the High-Temperature Sliding Wear Resistance of an Aluminium Alloyed Iron-Nickel Base Alloy, Tribol. Int., 2020, 148, p 106342. https://doi.org/10.1016/j.triboint.2020.106342

    Article  CAS  Google Scholar 

  30. F. Bergman, P. Hedenqvist, and S. Hogmark, The Influence of Primary Carbides and Test Parameters on Abrasive and Erosive Wear of Selected PM high Speed Steels, Tribol. Int., 1997, 30(3), p 183–191.

    Article  CAS  Google Scholar 

  31. B. Yang, X. Zhang, X. Xiong, and R. Liu, Optimization for Carbide Distribution and Ratio to Improve the Tribological Performance of FCC-based (CrFeNi)100-xCx Medium-Entropy Alloys (x = 0,4,8) Fabricated by Powder Metallurgy, Int. J. Refract Metal Hard Mater., 2022, 106, p 105858. https://doi.org/10.1016/j.ijrmhm.2022.105858

    Article  CAS  Google Scholar 

  32. N. Wu, F. Xue, J. He, C. Wang, J. Lu, H. Zhou, Y. Li, and F. Luo, Effect of Tungsten Carbide Content on the Tribological Behavior of TiB2-TiC-based cermets, Wear, 2022, 498–499, p 204333. https://doi.org/10.1016/j.wear.2022.204333

    Article  CAS  Google Scholar 

  33. J.-K. Xiao, H. Tan, J. Chen, A. Martini, and C. Zhang, Effect of Carbon Content on Microstructure, Hardness and Wear Resistance of CoCrFeMnNiCx High-Entropy Alloys, J. Alloy. Compd., 2020, 847, p 156533. https://doi.org/10.1016/j.jallcom.2020.156533

    Article  CAS  Google Scholar 

  34. M. Vardavoulias, The Role of Hard Second Phases in the Mild Oxidational Wear Mechanism of High-Speed Steel-Based Materials, Wear, 1994, 173, p 105–114. https://doi.org/10.1016/0043-1648(94)90262-3

    Article  CAS  Google Scholar 

  35. Z. Cheng, L. Yang, Z. Huang, T. Wan, M. Zhu, and F. Ren, Achieving Low Wear in a μ-Phase Reinforced High-Entropy Alloy and Associated Subsurface Microstructure Evolution, Wear, 2021, 474–475, p 203755. https://doi.org/10.1016/j.wear.2021.203755

    Article  CAS  Google Scholar 

  36. T.F.J. Quinn, Review of oxidational wear Part II: Recent Developments and Future Trends in Oxidational Wear Research, Tribol. Int., 1983, 16, p 305–315. https://doi.org/10.1016/0301-679X(83)90039-7

    Article  CAS  Google Scholar 

  37. T.F.J. Quinn, Review of oxidational wear: Part I: The Origins of Oxidational Wear, Tribol. Int., 1983, 16, p 257–271. https://doi.org/10.1016/0301-679X(83)90086-5

    Article  CAS  Google Scholar 

  38. J.L. Sullivan and S.G. Hodgson, A Study of Mild Oxidational Wear for Conditions of Low Load and Speed, Wear, 1988, 121, p 95–106. https://doi.org/10.1016/0043-1648(88)90033-6

    Article  CAS  Google Scholar 

  39. H. So, The Mechanism of Oxidational Wear, Wear, 1995, 184, p 161–167. https://doi.org/10.1016/0043-1648(94)06569-1

    Article  CAS  Google Scholar 

  40. D.W. Borland and S. Bian, Unlubricated Sliding Wear of Steels: Towards an Alternative Wear Equation, Wear, 1997, 209, p 171–178. https://doi.org/10.1016/S0043-1648(96)07478-9

    Article  CAS  Google Scholar 

  41. J. Zhang and A.T. Alpas, Transition Between Mild and Severe Wear in Aluminium Alloys, Acta Mater., 1997, 45, p 513–528. https://doi.org/10.1016/S1359-6454(96)00191-7

    Article  CAS  Google Scholar 

  42. F.H. Stott, The Role of Oxidation in the Wear of Alloys, Tribol. Int., 1998, 31, p 61–71. https://doi.org/10.1016/S0301-679X(98)00008-5

    Article  CAS  Google Scholar 

  43. J.Y. Yun, G.S. Shin, D.I. Kim, H.S. Lee, W.S. Kang, and S.J. Kim, Effect of Carbide Size and Spacing on the Fretting Wear Behavior of Inconel 690 SG Tube Mated with SUS 409, Wear, 2015, 338–339, p 252–257. https://doi.org/10.1016/j.wear.2015.06.012

    Article  CAS  Google Scholar 

  44. G. Lvov, V.I. Levit, and M.J. Kaufman, Mechanism of Primary MC Carbide Decomposition in Ni-Base Superalloys, Metall and Mat Trans A., 2004, 35, p 1669–1679. https://doi.org/10.1007/s11661-004-0076-x

    Article  Google Scholar 

  45. X. Dong, X. Zhang, K. Du, Y. Zhou, T. Jin, and H. Ye, Microstructure of Carbides at Grain Boundaries in Nickel Based Superalloys, J. Mater. Sci. Technol., 2012, 28, p 1031–1038. https://doi.org/10.1016/S1005-0302(12)60169-8

    Article  CAS  Google Scholar 

  46. L. Jiang, W.Z. Zhang, Z.F. Xu, H.F. Huang, X.X. Ye, B. Leng, L. Yan, Z.J. Li, and X.T. Zhou, M2C and M6C Carbide Precipitation in Ni-Mo-Cr Based Superalloys Containing Silicon, Mater. Des., 2016, 112, p 300–308. https://doi.org/10.1016/j.matdes.2016.09.075

    Article  CAS  Google Scholar 

  47. M. Weiser, R.J. Chater, B.A. Shollock, and S. Virtanen, Transport Mechanisms During the High-Temperature Oxidation of Ternary γ/γ′ Co-Base Model Alloys, Npj Mater Degrad., 2019, 3, p 33. https://doi.org/10.1038/s41529-019-0096-z

    Article  CAS  Google Scholar 

  48. J.T. Shen, M. Top, O. Ivashenko, P. Rudolf, Y.T. Pei, and JTh.M. De Hosson, Effect of Surface Reactions on steel, Al2O3 and Si3N4 Counterparts on their Tribological Performance with Polytetrafluoroethylene Filled Composites, Appl. Surf. Sci., 2015, 331, p 482–489. https://doi.org/10.1016/j.apsusc.2015.01.085

    Article  CAS  Google Scholar 

  49. A. Benamor, S. Kota, N. Chiker, A. Haddad, Y. Hadji, V. Natu, S. Abdi, M. Yahi, M.E. Benamar, T. Sahraoui, and M. Hadji, Friction and Wear Properties of MoAlB Against Al2O3 and 100Cr6 Steel Counterparts, J. Eur. Ceram. Soc., 2019, 39(4), p 868–877. https://doi.org/10.1016/j.jeurceramsoc.2018.10.026

    Article  CAS  Google Scholar 

  50. L. Bai, H. Zhang, S. Wan, G. Yi, and H. Sun, Tailoring Wear and Tribo-Induced Interaction of YSZ Coating Sliding Against Si3N4 and Al2O3 Counterparts, Wear, 2023, 518–519, p 204628. https://doi.org/10.1016/j.wear.2023.204628

    Article  CAS  Google Scholar 

  51. M. Zhang, Z. Jiang, M. Niu, Y. Sun, and X. Zhang, Tribological Behavior of CoCrFeNiMn High-Entropy Alloy Against 304, Al2O3 and Si3N4 Counterparts, Wear, 2022, 508–509, p 204471. https://doi.org/10.1016/j.wear.2022.204471

    Article  CAS  Google Scholar 

  52. C. Li, J. Teng, B. Yang, X. Ye, and Y. Li, Effect of Carbon Content on Wear Behavior of Ni-Co-Cr-Mo-Cu Alloy, J. Mater. Eng. Perform., 2023 https://doi.org/10.1007/s11665-023-08305-6

    Article  Google Scholar 

  53. R.C. Reed, Z. Zhu, A. Sato, and D.J. Crudden, Isolation and Testing of New Single Crystal Superalloys Using Alloys-by-Design Method, Mater. Sci. Eng. A, 2016, 667, p 261–278. https://doi.org/10.1016/j.msea.2016.04.089

    Article  CAS  Google Scholar 

  54. J. Gayda, T. Gabb, and P. Kantzos, The Effect of Dual Microstructure Heat Treatment on an Advanced Nickel-Base Disk Alloy, Proceed. Int. Symp. Superalloys., 2004 https://doi.org/10.7449/2004/Superalloys_2004_323_329

    Article  Google Scholar 

  55. T.J. Rupert and C.A. Schuh, Sliding Wear of Nanocrystalline Ni-W: Structural Evolution and the Apparent Breakdown of Archard Scaling, Acta Mater., 2010, 58, p 4137–4148. https://doi.org/10.1016/j.actamat.2010.04.005

    Article  CAS  Google Scholar 

  56. M.M. Khruschov, Principles of abrasive wear, Wear, 1974, 28, p 69–88. https://doi.org/10.1016/0043-1648(74)90102-1

    Article  Google Scholar 

  57. N. Axén and K.H. Zum Gahr, Abrasive wear of TiC-Steel Composite Clad Layers on Tool Steel, Wear, 1992, 157, p 189–201. https://doi.org/10.1016/0043-1648(92)90197-G

    Article  Google Scholar 

  58. G.Y. Lee, C.K.H. Dharan, and R.O. Ritchie, A Physically-Based Abrasive Wear Model for Composite Materials, Wear, 2002, 252, p 322–331. https://doi.org/10.1016/S0043-1648(01)00896-1

    Article  CAS  Google Scholar 

  59. M.A. Téllez-Villaseñor, C.A. León-Patiño, E.A. Aguilar-Reyes, and A. Bedolla-Jacuinde, Effect of Load and Sliding Velocity on the Wear Behaviour of Infiltrated TiC/Cu-Ni Composites, Wear, 2021, 484–485, p 203667. https://doi.org/10.1016/j.wear.2021.203667

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Mr. B. Yang wishes to express his gratitude for the support of the China Scholarship Council (202106370122).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunping Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Yang, B., Ye, X. et al. The Role of Manufacturing Techniques in Reciprocating Wear of Carbide-Reinforced Ni-Co-Cr-Mo-Cu Alloys. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08977-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08977-0

Keywords

Navigation