Skip to main content
Log in

The Effect of Electrode Size on Performance Measures of Inconel X750 using Nano-SiC Powder Mixing Electrical Discharge Machining

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The square hole with less than 1 mm fabricated on Inconel X750 has been challenged due to the high electrode wear and poor performance measures. Hence, the research paper deals with studying the influence of different electrode sizes on performance measures (squareness: Sq. ness, material removal rate: MRR, surface roughness: SR and electrode wear length: EWL) using nano-silicon carbide (SiC) mixing electrical discharge machining (EDM) of Inconel X750. Taguchi design has been used to design the experimental work and fabricating the square hole from 0.6 to 0.9 mm side length with 0.1 mm equal interval on Inconel X750. An influence of electrode size, pulse duration, duty cycle and current on performance measures of Inconel X750 has been studied using mean response plot. The element present in worn-out electrode surfaces has been studied using EDS analysis. Modeling and surface defects have been evaluated using a Microsoft Excel and scanning electron microscope, respectively. The additive ratio assessment (ARAS) approach is used to find the optimum process parameters. An analysis reveals the carbon layer formation due to the hydrocarbon-based dielectric through pyrolysis happening in the plasma channel. The 0.6 mm square electrode produces a square hole with less deviation compared with 0.7, 0.8 and 0.9 mm square electrodes. The 0.9 mm square electrodes have low wear length compared with other square electrodes. The performance measures are enhanced by the ARAS approach by 4% for Sq. ness, 12% for MRR, 9% for SR and 11% for EWL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The available data and material had been used and discussed in the manuscript.

Code Availability

No code has been used in this work.

References

  1. R.R. Panigrahi, A. Panda, A.K. Sahoo, and R. Kumar, Machining Performance Measures of High Temperature Heat Resistant Super alloys: A Review, Mater. Today: Proc., 2019, 18, p 4524–4530.

    Google Scholar 

  2. R. Choudhary, H. Garg, M. Prasad, and D. Kumar, Effect of Cryogenic Treatment of Tool Electrode on the Machining Performance and Surface Finish During Electrical Discharge Machining of Hastelloy C-4, Mater. Today: Proc., 2017, 4(2), p 1158–1166.

    Google Scholar 

  3. K. Manikandan and K. Palanikumar, Machinability Evaluation and Comparison of Incoloy 825, Inconel 603 XL, Monel K400 and Inconel 600 Super Alloys in Wire Electrical Discharge Machining, J. Mater. Res. Technol., 2020, 9(6), p 12260–12272.

    Article  CAS  Google Scholar 

  4. J.J. Maurer, J.J. Mallett, J.L. Hudson, S.E. Fick, T.P. Moffat, and G.A. Shaw, Electrochemical Micromachining of Hastelloy B-2 with Ultrashort Voltage Pulses, Electrochim. Acta, 2010, 55(3), p 952–958.

    Article  CAS  Google Scholar 

  5. V.S. Kannan, K. Lenin, D. Srinivasan, and D.R. Kumar, Investigation on Laser Square Hole Drilling of AA7475/SiC/ZrSiO4 Composites, SILICON, 2022, 14(9), p 4557–4574.

    Article  CAS  Google Scholar 

  6. V. Balasubramaniam, D. Rajkumar, P. Ranjithkumar, and C.S. Narayanan, Comparative Study of Mechanical Technologies over Laser Technology for Drilling Carbon Fiber Reinforced Polymer Materials, Indian J. Eng. Mater. Sci., 2020, 27, p 19–32.

    CAS  Google Scholar 

  7. R.B. Bhosle and S.B. Sharma, Multi-Performance Optimization of Micro-EDM Drilling Process of Inconel 600 Alloy, Mater. Today: Proc., 2017, 4(2), p 1988–1997.

    Google Scholar 

  8. S.K. Basha, M. Kolli, and M.J. Raju, Parametric optimization of EDM on Hastelloy C-276 Using Taguchi L18 Technique, Int. J. Eng. Technol., 2018, 7(27), p 714–716.

    Article  CAS  Google Scholar 

  9. S. Plaza, J.A. Sanchez, E. Perez, R. Gil, B. Izquierdo, N. Ortega, and I. Pombo, Experimental Study on Micro EDM-Drilling of Ti6Al4V Using Helical Electrode, Precis. Eng., 2014, 38(4), p 821–827.

    Article  Google Scholar 

  10. Z.Y. Yu, K.P. Rajurkar, and H. Shen, High Aspect Ratio and Complex Shaped Blind Micro Holes by Micro EDM, CIRP Ann., 2002, 51(1), p 359–362.

    Article  Google Scholar 

  11. B. Ekmekci and A. Sayar, Debris and Consequences in Micro Electric Discharge Machining of Micro-Holes, Int. J. Mach. Tools Manuf, 2013, 65, p 58–67.

    Article  Google Scholar 

  12. H.S. Liu, B.H. Yan, F.Y. Huang, and K.H. Qiu, A Study on the Characterization of High Nickel Alloy Micro-Holes Using Micro-EDM and their Applications, J. Mater. Process. Technol., 2005, 169(3), p 418–426.

    Article  CAS  Google Scholar 

  13. M.S. Azad and A.B. Puri, Simultaneous Optimisation of Multiple Performance Characteristics in Micro-EDM Drilling of Titanium Alloy, Int. J. Adv. Manuf. Technol., 2012, 61(9–12), p 1231–1239.

    Article  Google Scholar 

  14. P.C. Kaminski and M.N. Capuano, Micro Hole Machining by Conventional Penetration Electrical Discharge Machine, Int. J. Mach. Tools Manuf, 2003, 43(11), p 1143–1149.

    Article  Google Scholar 

  15. M. Ay, U. Çaydaş and A. Hasçalık, Optimization of Micro-EDM Drilling of Inconel 718 Superalloy, Int. J. Adv. Manuf. Technol., 2013, 66(5–8), p 1015–1023.

    Article  Google Scholar 

  16. Y.H. Jeong and B.K. Min, Geometry Prediction of EDM-Drilled Holes and Tool Electrode Shapes of Micro-EDM Process Using Simulation, Int. J. Mach. Tools Manuf., 2007, 47(12–13), p 1817–1826.

    Article  Google Scholar 

  17. Y. Feng, Y. Guo, Z. Ling, and X. Zhang, Micro-Holes EDM of Superalloy Inconel 718 Based on a Magnetic Suspension Spindle System, Int. J. Adv. Manuf. Technol., 2019, 101(5–8), p 2015–2026.

    Article  Google Scholar 

  18. D.G. Dilip, S. Panda, and J. Mathew, Characterization and Parametric Optimization of Micro-hole Surfaces in Micro-EDM Drilling on Inconel 718 Superalloy Using Genetic Algorithm, Arab. J. Sci. Eng., 2020, 45(7), p 5057–5074.

    Article  Google Scholar 

  19. G. D’Urso and C. Ravasio, The Effects of Electrode Size and Discharged Power on Micro-Electro-Discharge Machining Drilling of Stainless Steel, Adv. Mech. Eng., 2016, 8(5), p 1687814016648646.

    Article  Google Scholar 

  20. N. Natarajan and P. Suresh, Experimental Investigations on the Microhole Machining of 304 Stainless Steel by Micro-EDM Process Using RC-Type Pulse Generator, Int. J. Adv. Manuf. Technol., 2015, 77(9), p 1741–1750.

    Article  Google Scholar 

  21. M.P. Jahan, Y.S. Wong, and M. Rahman, A Study on the Quality Micro-Hole Machining of Tungsten Carbide by Micro-EDM Process Using Transistor and RC-Type Pulse Generator, J. Mater. Process. Technol., 2009, 209(4), p 1706–1716.

    Article  CAS  Google Scholar 

  22. M.D. Moses and M.P. Jahan, Micro-EDM Machinability of Difficult-to-Cut Ti-6Al-4V Against Soft Brass, Int. J. Adv. Manuf. Technol., 2015, 81(5), p 1345–1361.

    Article  Google Scholar 

  23. M.P. Jahan, Y.S. Wong, and M. Rahman, A Comparative Experimental Investigation of Deep-Hole Micro-EDM Drilling Capability for Cemented Carbide (WC-Co) Against Austenitic Stainless Steel (SUS 304), Int. J. Adv. Manuf. Technol., 2010, 46(9), p 1145–1160.

    Article  Google Scholar 

  24. C. Wang and Z. Qiang, Comparison of Micro-EDM Characteristics of Inconel 706 Between EDM Oil and an Al Powder-Mixed Dielectric, Adv. Mater. Sci. Eng., 2019, 2019, p 5625360.

    Google Scholar 

  25. K. Ishfaq, M.U. Waseem, and M. Sana, Investigating Cryogenically Treated Electrodes’ Performance Under Modified Dielectric (s) for EDM of Inconel (617), Mater. Manuf. Processes, 2022, 37, p 1902–1911.

    Article  CAS  Google Scholar 

  26. P. Kuppan, S. Narayanan, A. Rajadurai, and M. Adithan, Effect of EDM Parameters on Hole Quality Characteristics in Deep Hole Drilling of Inconel 718 Superalloy, Int. J. Manuf. Res., 2015, 10(1), p 45–63.

    Article  Google Scholar 

  27. P.V. Kumar, J. Vivek, N. Senniangiri, S. Nagarajan, and K. Chandrasekaran, A Study of Added Sic Powder in Kerosene for the Blind Square Hole Machining of CFRP Using Electrical Discharge Machining, SILICON, 2022, 14(4), p 1831–1849.

    Article  CAS  Google Scholar 

  28. R. Khanna, N. Sharma, N. Kumar, R.D. Gupta, and A. Sharma, WEDM of Al/SiC/Ti Composite: A Hybrid Approach of RSM-ARAS-TLBO Algorithm, Int. J. Lightweight Mater. Manuf., 2022, 5(3), p 315–325.

    CAS  Google Scholar 

  29. Q. Liu, Q. Zhang, G. Zhu, K. Wang, J. Zhang, and C. Dong, Effect of Electrode Size on the Performances of Micro-EDM, Mater. Manuf. Processes, 2016, 31(4), p 391–396.

    Article  CAS  Google Scholar 

  30. V. Muthukumar, N. Rajesh, R. Venkatasamy, A. Sureshbabu, and N. Senthilkumar, Mathematical Modeling for Radial Overcut on Electrical Discharge Machining of Incoloy 800 by Response Surface Methodology, Procedia Mater. Sci., 2014, 6, p 1674–1682.

    Article  CAS  Google Scholar 

  31. A. Kumar, R. Vishwakarma and S.K. Yadav, Optimization of EDM process parameter for inconel 925 by using Taguchi method, Recent Advances in Manufacturing Modelling and Optimization. Springer, Singapore, 2022, p 303–312

    Chapter  Google Scholar 

  32. K. Wang, Q. Zhang, G. Zhu, Y. Huang, and J. Zhang, Influence of Tool Size on Machining Characteristics of Micro-EDM, Procedia CIRP, 2018, 68, p 604–609.

    Article  Google Scholar 

  33. G. D’Urso and C. Ravasio, The Effects of Electrode Size and Discharged Power on Micro-Electro-Discharge Machining Drilling of Stainless Steel, Adv. Mech. Eng., 2016, 8(5), p 1687814016648646. https://doi.org/10.1177/1687814016648646

    Article  Google Scholar 

  34. Y.F. Tzeng and C.Y. Lee, Effects of Powder Characteristics on Electro discharge Machining Efficiency, Int. J. Adv. Manuf. Technol., 2001, 17(8), p 586–592.

    Article  Google Scholar 

  35. P. Pecas and E. Henriques, Electrical Discharge Machining Using Simple and Powder-Mixed Dielectric: The Effect of the Electrode Area in the Surface Roughness and Topography, J. Mater. Process. Technol., 2008, 200(1), p 250–258.

    Article  CAS  Google Scholar 

  36. R.V. Penmetsa, A. Ilanko, S. Rajesh et al., Experimental Study, and Machining Parameter Optimization on Powder-Mixed EDM of Nimonic 901 Using Feed-Forward Backpropagation Neural Networks, Int. J. Adv. Manuf. Technol., 2022 https://doi.org/10.1007/s00170-022-09297-8

    Article  Google Scholar 

  37. P.S. Bains, S.S. Sidhu, H.S. Payal, and S. Kaur, Magnetic Field Influence on Surface Modifications in Powder Mixed EDM, SILICON, 2019, 11(1), p 415–423.

    Article  CAS  Google Scholar 

  38. S.K. Sahu, T. Jadam, S. Datta, and G. Nandi, Effect of Using SiC Powder-Added Dielectric Media During Electro-Discharge Machining of Inconel 718 Superalloys, J. Braz. Soc. Mech. Sci. Eng., 2018, 40(7), p 1–19.

    Article  CAS  Google Scholar 

  39. M. Okawa, T. Shioiri, H. Okubo, and S. Yanabu, Area Effect on Electric Breakdown of Copper and Stainless Steel Electrodes in Vacuum, IEEE Trans. Electr. Insul., 1988, 23(1), p 77–81.

    Article  CAS  Google Scholar 

  40. P.J. Liew, J. Yan, and T. Kuriyagawa, Carbon Nanofiber Assisted Micro Electro Discharge Machining of Reaction-Bonded Silicon Carbide, J. Mater. Process. Technol., 2013, 213(7), p 1076–1087.

    Article  CAS  Google Scholar 

  41. A. Hasçalık and U. Çaydaş, Electrical Discharge Machining of Titanium Alloy (Ti–6Al–4V), Appl. Surf. Sci., 2007, 253(22), p 9007–9016.

    Article  ADS  Google Scholar 

  42. D. Raj Kumar, N. Jeyaprakash, C.H. Yang, and K.R. Ramkumar, Investigation on Drilling Behavior of CFRP Composites Using Optimization Technique, Arab. J. Sci. Eng., 2020, 45(11), p 8999–9014.

    Article  CAS  Google Scholar 

  43. D. Raj Kumar, N. Jeyaprakash, C.H. Yang, and K.R. Ramkumar, Investigation on Drilling Behavior of CFRP Composites Using Optimization Technique, Arab. J. Sci. Eng., 2020, 45, p 8999–9014.

    Article  CAS  Google Scholar 

  44. D.R. Kumar, N. Jeyaprakash, C.H. Yang, and S. Sivasankaran, Optimization of Drilling Process on Carbon-Fiber Reinforced Plastics Using Genetic Algorithm, Surf. Rev. Lett., 2021, 28(03), p 2050056.

    Article  CAS  ADS  Google Scholar 

  45. G. Feng, X. Yang, and G. Chi, Experimental and Simulation Study on Micro Hole Machining in EDM with High-Speed Tool Electrode Rotation, Int. J. Adv. Manuf. Technol., 2019, 101(1), p 367–375.

    Article  Google Scholar 

  46. A. Alhodaib, P. Shandilya, A.K. Rouniyar, and H. Bisaria, Experimental Investigation on Silicon Powder Mixed-EDM of Nimonic-90 Superalloy, Metals, 2021, 11(11), p 1673.

    Article  CAS  Google Scholar 

  47. R. Manivannan and M.P. Kumar, Multi-Attribute Decision-Making of Cryogenically Cooled Micro-EDM Drilling Process Parameters Using TOPSIS Method, Mater. Manuf. Processes, 2017, 32(2), p 209–215.

    Article  CAS  Google Scholar 

  48. M.T. Yan, K.Y. Huang, and C.Y. Lo, A Study on Electrode Wear Sensing and Compensation in Micro-EDM Using Machine Vision System, Int. J. Adv. Manuf. Technol., 2009, 42, p 1065–1073. https://doi.org/10.1007/s00170-008-1674-3

    Article  Google Scholar 

  49. A.P. Tiwary, B.B. Pradhan, and B. Bhattacharyya, Study on the Influence of Micro-EDM Process Parameters During Machining of Ti–6Al–4V Superalloy, Int. J. Adv. Manuf. Technol., 2015, 76(1), p 151–160.

    Article  Google Scholar 

  50. B.B. Pradhan, M. Masanta, B.R. Sarkar, and B. Bhattacharyya, Investigation of Electro-Discharge Micro-Machining of Titanium Super Alloy, Int. J. Adv. Manuf. Technol., 2009, 41(11), p 1094–1106.

    Article  Google Scholar 

  51. A.P. Tiwary, B.B. Pradhan, and B. Bhattacharyya, Influence of Various Metal Powder Mixed Dielectric on Micro-EDM Characteristics of Ti-6Al-4V, Mater. Manuf. Processes, 2019, 34(10), p 1103–1119.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank PRIMST, Vallam, Trichy, India, for providing scanning electron microscopy facilities.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

RK worked on conceptualization, methodology, writing, reviewing, discussion and editing, computation, methodology, software, discussion and conceptualization and analysis, writing the manuscript, methodology and software. SD and TK checked the review on the manuscript language.

Corresponding author

Correspondence to R. Kirubagharan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Consent to Participate

All persons named as authors in this manuscript have participated in the planning, design and performance of the research, and in the interpretation of the results.

Consent for Publication

All authors have endorsed the publication of this research. The manuscript has not been published elsewhere and it has not been submitted simultaneously for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirubagharan, R., Dhanabalan, S. & Karthikeyan, T. The Effect of Electrode Size on Performance Measures of Inconel X750 using Nano-SiC Powder Mixing Electrical Discharge Machining. J. of Materi Eng and Perform 33, 1283–1303 (2024). https://doi.org/10.1007/s11665-023-08835-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08835-z

Keywords

Navigation