Skip to main content

Advertisement

Log in

Structural, Optical, and Dielectric Properties of Zirconium Titanate Ceramic Composite Synthesized by Solid-State Reaction

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A ceramic material consisting of a binary oxide of zirconium and titanium, with a composition of titanium dioxide (TiO2)0.15 doped with zirconium dioxide (ZrO2)0.85, was synthesized using a solid-state reaction method and sintered at different temperatures such as room temperature, 800, 900, 1100, and 1200 °C. X-ray diffraction (XRD) technique was employed to ascertain the grain size, d-spacing, dislocation density, and microstrain values. The synthesis of the samples revealed that the zirconium phase exhibited predominantly monoclinic characteristics up to a temperature of 1100 °C. However, a mixed phase consisting of monoclinic and tetragonal phases was found at the temperature of 1200 °C. The shift toward lower angle sides of the maximum intensity peak was seen with increased sintering temperature. The optical characteristics of synthesized pure zirconium and TiO2-doped ZrO2 nanoparticles were examined using UV–Vis diffuse absorption spectroscopy. The sintering temperature directly impacted the band gap, resulting in a drop from 5.44 to 5.24 eV. The research explored the relationship between the synthesized nanoparticles’ frequency and dielectric properties such as dielectric constant, dielectric loss, and AC electrical conductivity. The dielectric constant and dielectric loss of ZrO2 doped with TiO2 demonstrated a significant decrease with increasing frequency. The phenomenon being discussed is widely recognized in the scientific community as Maxwell–Wagner polarization, following the theoretical framework put forward by Koop. The dielectric constant values observed in the unsintered samples were more significant than those observed in the sintered samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W. Zhu, R. Wang, G. Shu, P. Wu, and H. Xiao, First-Principles Study of Crystalline Zirconia’s Structure, Mechanical Properties, and Phase Stability under High Pressure, Struct. Chem., 2012, 23(3), p 601–611.

    Article  CAS  Google Scholar 

  2. M. Delarmelina, M.G. Quesne, and C.R.A. Catlow, Modelling the Bulk Properties of Ambient Pressure Polymorphs of Zirconia, Phys. Chem. Chem. Phys., 2020, 22(12), p 6660–6676.

    Article  CAS  Google Scholar 

  3. G. Cabello, L. Lillo, C. Caro, G.E. Buono-Core, B. Chornik, and M.A. Soto, Structure and Optical Characterization of Photochemically Prepared ZrO2 thin Films Doped with Erbium and Europium, J. Non-Cryst. Solids, 2008, 354(33), p 3919–3928.

    Article  CAS  Google Scholar 

  4. L.K. Dash, N. Vast, P. Baranek, M.C. Cheynet, and L. Reining, Electronic Structure and Electron energy-Loss Spectroscopy of ZrO2 Zirconia, Phys. Rev. B, 2004, 70(24), 245116.

    Article  Google Scholar 

  5. X. Zhang, H. Su, and X. Yang, Catalytic Performance of a Three-Dimensionally Ordered Macroporous Co/ZrO2 Catalyst in FISCHER-Tropsch Synthesis, J. Mol. Catal. A: Chem., 2012, 360, p 16–25.

    Article  CAS  Google Scholar 

  6. X. Wang, B. Zhai, M. Yang, W. Han, and X. Shao, ZrO2/CeO2 Nanocomposite: Two-Step Synthesis, Microstructure, and Visible-Light Photocatalytic Activity, Mater. Lett., 2013, 112, p 90–93.

    Article  CAS  Google Scholar 

  7. M. Mamak, N. Coombs, and G.A. Ozin, Mesoporous Nickel− Yttria− Zirconia Fuel Cell Materials, Chem. Mater., 2001, 13(10), p 3564–3570.

    Article  CAS  Google Scholar 

  8. R. Zhang, X. Zhang, and S. Hu, High Temperature and Pressure Chemical Sensors Based on Zr/ZrO2 Electrode Prepared by Nanostructured ZrO2 film at Zr Wire, Sens. Actuators, B Chem., 2010, 149(1), p 143–154.

    Article  Google Scholar 

  9. G. Gusmano, G. Montesperelli, M. Rapone, G. Padeletti, A. Cusmà, S. Kaciulis, A. Mezzi, and R. Di Maggio, Zirconia Primers for Corrosion-Resistant Coatings, Surf. Coat. Technol., 2007, 201(12), p 5822–5828.

    Article  CAS  Google Scholar 

  10. C. Zhang, C. Li, J. Yang, Z. Cheng, Z. Hou, Y. Fan, and J. Lin, Tunable Luminescence in Monodisperse Zirconia Spheres, Langmuir, 2009, 25(12), p 7078–7083.

    Article  CAS  Google Scholar 

  11. N. Najibi-Ilkhechi, B. Koozegar-Kaleji, and E. Salahi, Effect of Heating Rate on Structural and Optical Properties of Si and Mg co-Doped ZrO2 Nanopowders, Opt. Quant. Electron., 2015, 47(5), p 1187–1195.

    Article  CAS  Google Scholar 

  12. R. Ruiz-Rosas, J. Bedia, J.M. Rosas, M. Lallave, I.G. Loscertales, J. Rodríguez-Mirasol, and T. Cordero, Methanol Decomposition on Electrospun Zirconia Nanofibers, Catal. Today, 2012, 187(1), p 77–87.

    Article  CAS  Google Scholar 

  13. T. Arunkumar, G. Anand, R. Subbiah, R. Karthikeyan, and J. Jeevahan, Effect of Multiwalled Carbon Nanotubes on Improvement of Fracture Toughness of Spark-Plasma-Sintered yttria-Stabilized Zirconia Nanocomposites, J. Mater. Eng. Perform., 2021, 30, p 3925–3933.

    Article  CAS  Google Scholar 

  14. I. Stambolova, D. Stoyanova, M. Shipochka, N. Boshkova, A. Eliyas, S. Simeonova, N. Grozev, and N. Boshkov, Surface Morphological and Chemical Features of Anticorrosion ZrO2–TiO2 Coatings: Impact of Zirconium Precursor, Coatings, 2021, 11(6), p 703.

    Article  CAS  Google Scholar 

  15. R.B. Heimann, Classic and Advanced Ceramics: From Fundamentals to Applications, Wiley, 2010.

    Book  Google Scholar 

  16. C. Gautam, J. Joyner, A. Gautam, J. Rao, and R. Vajtai, Zirconia-Based Dental Ceramics: Structure, Mechanical Properties, Biocompatibility, and Applications, Dalton Trans., 2016, 45(48), p 19194–19215.

    Article  CAS  Google Scholar 

  17. R.H. French, S.J. Glass, F.S. Ohuchi, Y.N. Xu, and W.Y. Ching, Experimental and Theoretical Determination of the Electronic Structure and Optical Properties of Three Phases of ZrO2, Phys. Rev. B, 1994, 49(8), p 5133.

    Article  CAS  Google Scholar 

  18. M. Hirano, C. Nakahara, K. Ota, and M. Inagaki, Direct Formation of Zirconia-Doped Titania with Stable Anatase-Type Structure by Thermal Hydrolysis, J. Am. Ceram. Soc., 2002, 85(5), p 1333–1335.

    Article  CAS  Google Scholar 

  19. A. Wiatrowski, D. Wojcieszak, M. Mazur, D. Kaczmarek, J. Domaradzki, M. Kalisz, W. Kijaszek, P. Pokora, E. Mańkowska, A. Lubanska, and M. Sikora, Photocatalytic Coatings Based on TiOx for Application on Flexible Glass for Photovoltaic Panels, J. Mater. Eng. Perform., 2022, 31(9), p 6998–7008.

    Article  CAS  Google Scholar 

  20. M. Caldararu, M.F. Thomas, J. Bland, and D. Spranceana, Redox Processes in Sb-Containing Mixed Oxides Used in Oxidation Catalysis: I. Tin Dioxide-Assisted Antimony Oxidation in a Solid State, Appl. Catal. A: General, 2001, 209, p 383–390.

    Article  CAS  Google Scholar 

  21. O. Carp, C.L. Huisman, and A. Reller, Photoinduced Reactivity of Titanium Dioxide, Prog. Solid State Chem., 2004, 32(1–2), p 33–177.

    Article  CAS  Google Scholar 

  22. S.V. Pol, V.G. Pol, A. Gedanken, G.I. Spijksma, J. Grinblat, R.K. Selvan, V.G. Kessler, G.A. Seisenbaeva, and S. Gohil, Synthesis of Nanocrystalline Zirconium Titanate and its Dielectric Properties, J. Phys. Chem. C, 2007, 111(6), p 2484–2489.

    Article  CAS  Google Scholar 

  23. E. López-López, C. Baudín, R. Moreno, I. Santacruz, L. Leon-Reina, and M.A.G. Aranda, Structural Characterization of Bulk ZrTiO4 and its Potential for Thermal Shock Applications, J. Eur. Ceram. Soc., 2012, 32(2), p 299–306.

    Article  Google Scholar 

  24. M.A. Krebs and R.A. Condrate, A Raman Spectral Characterization of Various Crystalline Mixtures in the ZrO2-TiO2 and HfO2-TiO2 Systems, J. Mater. Sci. Lett., 1988, 7(12), p 1327–1330.

    Article  CAS  Google Scholar 

  25. J.A. Navio, F.J. Marchena, M. Macias, P.J. Sanchez-Soto, and P. Pichat, Formation of Zirconium Titanate Powder From a Sol–Gel Prepared Reactive Precursor, J. Mater. Sci., 1992, 27(9), p 2463–2467.

    Article  CAS  Google Scholar 

  26. A. Gajović, K. Furić, S. Musić, I. Djerdj, A. Tonejc, A.M. Tonejc, D. Su, and R. Schlögl, Mechanism of ZrTiO4 Synthesis by Mechanochemical Processing of TiO2 and ZrO2, J. Am. Ceram. Soc., 2006, 89(7), p 2196–2205.

    Google Scholar 

  27. E. López-López, J.P. Erauw, R. Moreno, C. Baudín, and F. Cambier, Elastic Behaviour of Zirconium Titanate Bulk Material at Room and High Temperature, J. Eur. Ceram. Soc., 2012, 32(16), p 4083–4089.

    Article  Google Scholar 

  28. E. López-López, M.L. Sanjuán, R. Moreno, and C. Baudín, Phase Evolution in Reaction Sintered Zirconium Titanate-Based Materials, J. Eur. Ceram. Soc., 2010, 30(4), p 981–991.

    Article  Google Scholar 

  29. W. Ahmed and J. Iqbal, Co-doped ZrO2 Nanoparticles: An Efficient Visible Light-Triggered Photocatalyst with Enhanced Structural, Optical and Dielectric Characteristics, Ceram. Int., 2020, 46(16), p 25833–25844.

    Article  CAS  Google Scholar 

  30. S. Verma, S. Rani, and S. Kumar, Tetragonal Zirconia Quantum Dots in Silica Matrix Prepared by a Modified Sol–Gel Protocol, Appl. Phys. A, 2018, 124(5), p 1–14.

    Article  CAS  Google Scholar 

  31. R.S. Das, S.K. Warkhade, A. Kumar, and A.V. Wankhede, Graphene Oxide-Based Zirconium Oxide Nanocomposite for Enhanced Visible-Light-Driven Photocatalytic Activity, Res. Chem. Intermed., 2019, 45(4), p 1689–1705.

    Article  CAS  Google Scholar 

  32. K.R. Andita, R. Kurniawan, and A. Syoufian, Synthesis and Characterization of Cu-Doped Zirconium Titanate as a Potential Visible-Light Responsive Photocatalyst, Indones. J. Chem., 2019, 19(3), p 761–766.

    Article  CAS  Google Scholar 

  33. M.S. Johnson, M. Ates, Z. Arslan, I.O. Farah, and C. Bogatu, Assessment of Crystal Morphology on the Uptake, Particle Dissolution, and Toxicity of Nanoscale Titanium Dioxide on Artemia Salina, J. Nanotoxicol. Nanomed., 2017, 2(1), p 11–27.

    Article  Google Scholar 

  34. T. Dhandayuthapani, R. Sivakumar, and R. Ilangovan, Growth of Micro Flower Rutile TiO2 Films by Chemical Bath Deposition Technique: Study the Properties of Structural, Surface Morphological, Vibrational, Optical, and Compositional, Surf. Interfaces, 2016, 4, p 59–68.

    Article  CAS  Google Scholar 

  35. T. Ivanova, A. Harizanova, T. Koutzarova, N. Krins, and B. Vertruyen, Electrochromic TiO2, ZrO2, and TiO2-ZrO2 Thin Films by Dip-Coating, Mater. Sci. Eng., B, 2009, 165(3), p 212–216.

    Article  CAS  Google Scholar 

  36. S. Verma, S. Rani, S. Kumar, and M.M. Khan, Rietveld Refinement, Micro-Structural, Optical and Thermal Parameters of Zirconium Titanate Composites, Ceram. Int., 2018, 44(2), p 1653–1661.

    Article  CAS  Google Scholar 

  37. Keiteb, A.S., Saion, E., Zakaria, A., and Soltani, N., 2016. Structural and optical properties of zirconia nanoparticles by thermal treatment synthesis. Journal of nanomaterials, 2016.

  38. N. Akhtar, H.M. Rafique, S. Atiq, S. Aslam, A. Razaq, and M. Saleem, Dielectric-Based Energy Storage Capacity of Sol–Gel Synthesized Sr-Doped ZrTiO4 Nanocrystallites, Ceram. Int., 2018, 44(6), p 6705–6712.

    Article  CAS  Google Scholar 

  39. B. Tiwari and R.N.P. Choudhary, Effect of mn on Structural and Dielectric Properties of Pb(Zr0.5Tti0.48)O3 Electroceramic, IEEE Trans. Dielectr. Electr. Insulation, 2015, 22(5), p 3046–3052.

    Article  CAS  Google Scholar 

  40. Y. Şafak-Asar, T. Asar, Ş Altındal, and S. Özçelik, Investigation of Dielectric Relaxation and ac Electrical Conductivity using Impedance Spectroscopy Method in (AuZn)/TiO2/p-GaAs (1 1 0) Schottky Barrier Diodes, J. Alloys Compd., 2015, 628, p 442–449.

    Article  Google Scholar 

  41. I.G. Austin and N.F. Mott, Polarons in Crystalline and Non-Crystalline Materials, Adv. Phys., 1969, 18(71), p 41–102.

    Article  CAS  Google Scholar 

  42. Devan, R.S., and Chougule, B.K., 2007. Effect of composition on coupled electric, magnetic, and dielectric properties of two-phase particulate magnetoelectric composite. J. Appl. Phys.101(1).

  43. R. Jacob, H.G. Nair, and J. Isac, Impedance Spectroscopy and Dielectric Studies of Nanocrystalline Iron-Doped Barium Strontium Titanate Ceramics, Process. Appl. Ceram., 2015, 9(2), p 73–79.

    Article  Google Scholar 

Download references

Acknowledgment

The authors are grateful to the Chancellor and management of VIT groups and express special thanks to the Vice-Chancellor of VIT-AP for their permission to publish this article. Moreover, the RGEMS project (RGEMS2021016) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Sudagar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sravanthi, M.N., Sudagar, J. Structural, Optical, and Dielectric Properties of Zirconium Titanate Ceramic Composite Synthesized by Solid-State Reaction. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08827-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08827-z

Keywords

Navigation