Skip to main content

Advertisement

Log in

Effect of Heat Treatment on Microstructure, Mechanical and Corrosion Behavior of Ti-7Mo-8Nb Alloy for Biomedical Applications

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study investigates the effect of heat treatment on microstructure, mechanical and corrosion behavior of a novel Ti-7Mo-8Nb alloy that can be used in biomedical applications. The samples were prepared using powder metallurgy technique. The samples were subjected to sub-solution treatment at 765 °C for 1 h and quenched in water followed by aging at 400, 500 and 600 °C for 4 h to study the aging temperature effect. Vickers hardness, compression and wear tests were performed and compared to the as-sintered sample. Maximum elastic modulus (49.72 GPa) was obtained for the aged sample 600 °C due to the over-aging, while minimum elastic modulus (35.21 GPa) was reported for the sample aged at 500 °C. Maximum tensile properties were also reported for the sample aged at 500 °C while minimum wear and corrosion rates were registered for the same sample. Hence, Ti-7Mo-8Nb alloy aged at 500 °C showed superior mechanical and electrochemical performance; it can be considered as a good candidate alloy for orthopedic biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. A. Amigó, A. Vicente, C.R. Afonso, and V. Amigó, Mechanical Properties and the Microstructure of β Ti–35Nb–10Ta–x Fe Alloys Obtained by Powder Metallurgy for Biomedical Applications, Metals, 2019, 9(1), p 76.

    Article  Google Scholar 

  2. W. Xu, X. Lu, M.D. Hayat, J. Tian, C. Huang, M. Chen, and C. Wen, Fabrication and Properties of Newly Developed Ti35Zr28Nb Scaffolds Fabricated by Powder Metallurgy for Bone-Tissue Engineering, J. Mater. Res. Technol., 2019, 8(5), p 3696–3704.

    Article  CAS  Google Scholar 

  3. R.M. Pilliar, H.U. Cameron, A.G. Binnington, J. Szivek, and I. Macnab, Bone Ingrowth and Stress Shielding with a Porous Surface Coated Fracture Fixation Plate, J. Biomed. Mater. Res., 1979, 13(5), p 799–810.

    Article  CAS  PubMed  Google Scholar 

  4. R.P. Kolli and A. Devaraj, A Review of Metastable Beta Titanium Alloys, Metals, 2018, 8(7), p 506.

    Article  Google Scholar 

  5. P.E. Moraes, R.J. Contieri, E.S. Lopes, A. Robin, and R. Caram, Effects of Sn Addition on the Microstructure, Mechanical Properties and Corrosion Behavior of Ti–Nb–Sn Alloys, Mater. Charact., 2014, 96, p 273–281.

    Article  CAS  Google Scholar 

  6. R. Santhosh, M. Geetha, and M. Nageswara Rao, Recent Developments in Heat Treatment of Beta Titanium Alloys for Aerospace Applications, Transact. Indian Inst. Metals, 2017, 70.7, p 1681–1688.

    Article  Google Scholar 

  7. M.J. Donachie, Titanium, A Technical Guide, 2000, 2, p 5–123.

    Article  Google Scholar 

  8. N. Yumak and K. Aslantaş, A Review on Heat Treatment Efficiency in Metastable β Titanium Alloys: The Role of Treatment Process and Parameters, J. Market. Res., 2020, 9(6), p 15360–15380.

    CAS  Google Scholar 

  9. C.L. Li, X.J. Mi, W.J. Ye, S.X. Hui, Y. Yu, and W.Q. Wang, Effect of Solution Temperature on Microstructures and Tensile Properties of High Strength Ti–6Cr–5Mo–5V–4Al Alloy, Mater. Sci. Eng. A, 2013, 578, p 103–109.

    Article  CAS  Google Scholar 

  10. S. Shekhar, R. Sarkar, S.K. Kar, and A. Bhattacharjee, Effect of Solution Treatment and Aging on Microstructure and Tensile Properties of High Strength β Titanium Alloy, Ti–5Al–5V–5Mo–3Cr, Mater. Des., 2015, 66, p 596–610.

    Article  CAS  Google Scholar 

  11. Y.L. Zhou and M. Niinomi, Microstructures and Mechanical Properties of Ti–50 Mass% Ta Alloy for Biomedical Applications, J. Alloy. Compd., 2008, 466(1–2), p 535–542.

    Article  CAS  Google Scholar 

  12. B. Wang, Z. Liu, Y. Gao, S. Zhang, and X. Wang, Microstructural Evolution During Aging of Ti–10V–2Fe–3Al Titanium Alloy, J. Univ. Sci. Technol. Beijing Min. Metall. Mater., 2007, 14(4), p 335–340.

    CAS  Google Scholar 

  13. P. Neacsu et al., In vitro Performance Assessment of New Beta Ti–Mo–Nb Alloy Compositions, Mater. Sci. Eng. C, 2015, 47, p 105–113.

    Article  CAS  Google Scholar 

  14. P. Neacsu, D.M. Gordin, V. Mitran, T. Gloriant, M. Costache, and A. Cimpean, In vitro Performance Assessment of New Beta Ti–Mo–Nb Alloy Compositions, Mater. Sci. Eng. C, 2015, 47, p 105–113.

    Article  CAS  Google Scholar 

  15. L.H. De Almeida, I.N. Bastos, I.D. Santos, A.J.B. Dutra, C.A. Nunes, and S.B. Gabriel, Corrosion Resistance of Aged Ti–Mo–Nb Alloys for Biomedical Applications, J. Alloy. Compd., 2014, 615, p S666–S669.

    Article  Google Scholar 

  16. S.G. Borborema, J. Dille, C.A. Nunes, E. Santos Jr., R. Baldan, P. Mei, and L.H. de Almeida, Effect of Hot Swaging on Microstructure and Properties of Aged Ti–10Mo–20Nb Alloy, Mater. Sci. Forum Trans Tech Publicat. Ltd, 2016, 869, p 952–956.

    Google Scholar 

  17. S.B. Gabriel, M.C. Rezende, L.H.D. Almeida, C.A. Nunes, J. Dille, and G.D.A. Soares, Control of the Microhardness to Young Modulus Ratio by Mechanical Processing of a Ti–10Mo–20Nb Alloy, Mater. Res., 2015, 18, p 39–42.

    Article  CAS  Google Scholar 

  18. Y. Eren, K.F. Nur, G. Azim, and F. Fehim, Production and Characterization of a Bone-Like Porous Ti/Ti-Hydroxyapatite Functionally Graded Material, J. Mater. Eng. Perform., 2020, 29(10), p 6455–6467.

    Article  Google Scholar 

  19. Eren Yılmaz, Azim Gökçe, Fehim Findik, Ozkan Gulsoy, and Osman Iyibilgin, Mechanical Properties and Electrochemical Behavior of Porous Ti–Nb Biomaterials, J. Mech. Behav. Biomed. Mater., 2018, 87, p 59–67.

    Article  PubMed  Google Scholar 

  20. E. Yılmaz, A. Gökçe, F. Findik, and O. Gulsoy, Assessment of Ti–16Nb–xZr Alloys Produced via PIM for Implant Applications, J. Therm. Anal. Calorim., 2018, 134(1), p 7–14.

    Article  Google Scholar 

  21. A.R.V. Nunes, S.B. Gabriel, C.A. Nunes, L.S. Araújo, R. Baldan, P. Mei, and L.H.D. Almeida, Microstructure and Mechanical Properties of Ti–12Mo–8Nb Alloy Hot Swaged and Treated for Orthopedic Applications, Mater. Res., 2017, 20, p 526–531.

    Article  Google Scholar 

  22. M. Saood, K.M. Ibrahim, E. El-kashif, M. Shoeib, A. Elshalakany, and M.S. Mohamed, Mechanical Behavior and Corrosion Properties of Ti–7Mo–8Nb Alloy for Biomedical Applications, Mater. Res. Exp., 2021, 8(9), 095401.

    Article  CAS  Google Scholar 

  23. D. Qin, Y. Lu, Q. Liu, L. Zheng, and L. Zhou, Transgranular Shearing Introduced Brittlement of Ti–5Al–5V–5Mo–3Cr Alloy with Full Lamellar Structure at Room Temperature, Mater. Sci. Eng. A, 2013, 572, p 19–24.

    Article  CAS  Google Scholar 

  24. A. El Chaikh, P. Schmidt, and H.J. Christ, Fatigue Properties of Duplex-Aged Ti 38–644 Metastable Beta Titanium Alloy, Procedia Eng., 2010, 2(1), p 1973–1982.

    Article  Google Scholar 

  25. S.B. Gabriel, L.H. de Almeida, C.A. Nunes, J. Dille, and G.A. Soares, Maximisation of the Ratio of Microhardness to the Young’s Modulus of Ti–12Mo–13Nb Alloy Through Microstructure Changes, Mater. Sci. Eng. C, 2013, 33(6), p 3319–3324.

    Article  CAS  Google Scholar 

  26. J. Fan, J. Li, H. Kou, K. Hua, B. Tang, and Y. Zhang, Microstructure and Mechanical Property Correlation and Property Optimization of a Near β Titanium Alloy Ti-7333, J. Alloy. Compd., 2016, 682, p 517–524.

    Article  CAS  Google Scholar 

  27. E.S.N. Lopes, A. Cremasco, C.R.M. Afonso, and R. Caram, Effects of Double Aging Heat Treatment on the Microstructure, Vickers Hardness and Elastic Modulus of Ti–Nb Alloys, Mater Charact, 2011, 62(7), p 673–680.

    Article  CAS  Google Scholar 

  28. K.A. Nazari, A. Nouri, and T. Hilditch, Mechanical Properties and Microstructure of Powder Metallurgy Ti–xNb–yMo alloys for Implant Materials, Mater. Des., 2015, 88, p 1164–1174.

    Article  CAS  Google Scholar 

  29. S. Ehtemam-Haghighi, H. Attar, M.S. Dargusch, and D. Kent, Microstructure, Phase Composition and Mechanical Properties of New, Low Cost Ti–Mn–Nb Alloys for Biomedical Applications, J. Alloy. Compd., 2019, 787, p 570–577.

    Article  CAS  Google Scholar 

  30. S. Ehtemam-Haghighi, H. Attar, I.V. Okulov, M.S. Dargusch, and D. Kent, Microstructural Evolution and Mechanical Properties of Bulk and Porous Low-Cost Ti–Mo–Fe Alloys Produced by Powder Metallurgy, J. Alloy. Compd., 2021, 853, 156768.

    Article  CAS  Google Scholar 

  31. I. Weiss and S.L. Semiatin, Thermomechanical Processing of Beta Titanium Alloys—An Overview, Mater. Sci. Eng. A, 1998, 243(1–2), p 46–65.

    Article  Google Scholar 

  32. M. Ahmed, D.G. Savvakin, O.M. Ivasishin, and E.V. Pereloma, The Effect of Thermo-Mechanical Processing and Ageing Time on Microstructure and Mechanical Properties of Powder Metallurgy near β Titanium Alloys, J. Alloy. Compd., 2017, 714, p 610–618.

    Article  CAS  Google Scholar 

  33. F.J. Gil, M.P. Ginebra, J.M. Manero, and J.A. Planell, Formation of α-Widmanstätten Structure: Effects of Grain Size and Cooling Rate on the Widmanstätten Morphologies and on the Mechanical Properties in Ti6Al4V Alloy, J. Alloys Compd, 2001, 329(1–2), p 142–152.

    Article  CAS  Google Scholar 

  34. D. Zhao, K. Chang, T. Ebel, M. Qian, R. Willumeit, M. Yan, and F. Pyczak, Microstructure and Mechanical Behavior of Metal Injection Molded Ti–Nb Binary Alloys as Biomedical Material, J. Mech. Behav. Biomed. Mater., 2013, 28, p 171–182.

    Article  CAS  PubMed  Google Scholar 

  35. J.E. Bidaux, C. Closuit, M. Rodriguez-Arbaizar, D. Zufferey, and E. Carreño-Morelli, Processing of a Low Modulus Ti–Nb Biomaterial by Metal Injection Molding (MIM), PIM Int, 2012, 6, p 72–75.

    Google Scholar 

  36. S.V. Muley, S.P. Singh, P. Sinha, P.P. Bhingole, and G.P. Chaudhari, Microstructural Evolution in Ultrasonically Processed in situ AZ91 Matrix Composites and Their Mechanical and Wear Behavior, Mater. Des., 2014, 53, p 475–481.

    Article  CAS  Google Scholar 

  37. Wei Xu et al., Effects of Mo Content on Corrosion and Tribocorrosion Behaviours of Ti–Mo Orthopaedic Alloys Fabricated by Powder Metallurgy, Corr. Sci., 2020, 168, p 108557.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imad Al-Kashef.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saood, M., Ibrahim, K.M., Al-Kashef, I. et al. Effect of Heat Treatment on Microstructure, Mechanical and Corrosion Behavior of Ti-7Mo-8Nb Alloy for Biomedical Applications. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-023-08820-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08820-6

Keywords

Navigation