Skip to main content

Advertisement

Log in

Enhanced Energy Storage Characteristics of Bi(Mg0.5Ce0.5)O3 Modified (Sr0.7Bi0.2)TiO3 Lead-Free Ceramics

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

(1 − x)Sr0.7Bi0.2TiO3-xBi(Mg0.5Ce0.5)O3 (x = 0.02, 0.04, 0.06, and 0.1) ceramics were prepared through the solid-state reaction method. Structural, microstructural, dielectric, and energy storage characteristics were thoroughly examined. A dense microstructure with a single perovskite phase was obtained for x ≤ 0.06. A high energy storage density of ~ 1.86 J/cm3, recoverable energy density of ~ 1.67 J/cm3, and a high efficiency of ~ 90% at a breakdown electric field strength of 240 kV/cm were achieved for x = 0.06. Further, this composition also shows a ΔC/C25°C in the range of − 55 to 135 °C. The above characteristics indicate that this material is a suitable candidate for power-pulsed capacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F.C. Beach and I.R. McNab, Present and Future Naval Applications for Pulsed Power, in IEEE Pulsed Power Conference (2005), p. 1–7.

  2. M. Acosta, J. Zang, W. Jo, and J. Rödel, High-Temperature Dielectrics in CaZrO3-Modified Bi1/2Na1/2TiO3-Based Lead-Free Ceramics, J. Eur. Ceram. Soc., 2012, 32(16), p 4327–4334.

    Article  CAS  Google Scholar 

  3. Z.H. Shen, J.J. Wang, X. Zhang, Y. Lin, C.W. Nan, L.Q. Chen, and Y. Shen, Space Charge Effects on the Dielectric Response of Polymer Nanocomposites, Appl. Phys. Lett., 2017, 111(9), p 092901.

    Article  ADS  Google Scholar 

  4. H. Ogihara, C.A. Randall, and S. Trolier-McKinstry, Effect of BiMO3 (M= Al, In, Y, Sm, Nd, and La) Doping on the Dielectric Properties of BaTiO3 Ceramics, J. Am. Ceram. Soc., 2009, 92(8), p 1719–1724.

    Article  CAS  Google Scholar 

  5. T. Shao, H. Du, H. Ma, S. Qu, J. Wang, J. Wang, and Z. Xu, Potassium–Sodium Niobate Based Lead-Free Ceramics: Novel Electrical Energy Storage Materials, J. Mater. Chem. A, 2017, 5(2), p 554–563.

    Article  CAS  Google Scholar 

  6. W.B. Li, D. Zhou, L.X. Pang, R. Xu, and H.H. Guo, Novel Barium Titanate Based Capacitors with High Energy Density and Fast Discharge Performance, J. Mater. Chem. A, 2017, 5(37), p 19607–19612.

    Article  CAS  Google Scholar 

  7. M. Savinov, V.A. Trepakov, P.P. Syrnikov, V. Železný, J. Pokorný, A. Dejneka, and P. Galinetto, effect of BiMO3 (M= Al, In, Y, Sm, Nd, and La) Doping on the Dielectric Properties of BaTiO3 Ceramics, J. Phys. Condens. Matter, 2008, 20(9), p 095221.

    Article  ADS  Google Scholar 

  8. G.F. Zhang, H. Liu, Z. Yao, M. Cao, and H. Hao, Effects of Ca Doping on the Energy Storage Properties of (Sr, Ca) TiO3 Paraelectric Ceramics, J. Mater. Sci. Mater. Electron., 2015, 26(5), p 2726–2732.

    Article  CAS  Google Scholar 

  9. C. Ang and Z. Yu, Dielectric Relaxor and Ferroelectric Relaxor: Bi-doped Paraelectric SrTiO3, J. Appl. Phys., 2002, 91(3), p 1487–1494.

    Article  ADS  Google Scholar 

  10. Z.Y. Shen, Y.M. Li, W.Q. Luo, Z.M. Wang, X.Y. Gu, and R.H. Liao, Structure and Dielectric Properties of NdxSr1xTiO3 Ceramics for Energy Storage Application, J. Mater. Sci. Mater. Electron., 2012, 24, p 704.

    Article  Google Scholar 

  11. G.F. Zhang, M. Cao, H. Hao, and H. Liu, Energy Storage Characteristics in Sr(11.5x)BixTiO3 Ceramics, Ferroelectrics, 2013, 447(1), p 86–94.

    Article  ADS  CAS  Google Scholar 

  12. W.Q. Luo and Z.Y. Shen, Low-Temperature H2S Sensing Performance of Cu-Doped ZnFe2O4 Nanoparticles with Spinel Structure, J. Ceram. Process. Res., 2016, 17(4), p 271–274.

    Google Scholar 

  13. R.V. Shende, D.S. Krueger, G.A. Rossetti, and S.J. Lombardo, Strontium Zirconate and Strontium Titanate Ceramics for High-Voltage Applications: Synthesis, Processing, and Dielectric Properties, J. Am. Ceram. Soc., 2001, 84(7), p 1648–1650.

    Article  CAS  Google Scholar 

  14. H. Yang, F. Yan, Y. Lin, and T. Wang, Enhanced Recoverable Energy Storage Density and High Efficiency of SrTiO3-Based Lead-Free Ceramics, Appl. Phys. Lett., 2017, 111(25), p 253903.

    Article  ADS  Google Scholar 

  15. Z. Yao, Q. Luo, G. Zhang, H. Hao, M. Cao, and H. Liu, Improved Energy-Storage Performance and Breakdown Enhancement Mechanism of Mg-Doped SrTiO3 Bulk Ceramics for High Energy Density Capacitor Applications, J. Mater. Sci. Mater. Electron., 2017, 28(15), p 11491–11499.

    Article  CAS  Google Scholar 

  16. G. Zhao, Y. Li, H. Liu, J. Xu, H. Hao, M. Cao, and Z. Yu, Effect of SiO2 Additives on the Microstructure and Energy Storage Density of SrTiO3 Ceramics, J. Ceram. Process. Res., 2012, 13(3), p 310–314.

    Google Scholar 

  17. W.P. Cao, W.L. Li, X.F. Dai, T.D. Zhang, J. Sheng, Y.F. Hou, and W.D. Fei, Large Electrocaloric Response and High Energy-Storage Properties Over a Broad Temperature Range in Lead-Free NBT-ST Ceramics, J. Eur. Ceram. Soc., 2016, 36(3), p 593–600.

    Article  CAS  Google Scholar 

  18. L. Feng, K. Yang, X. Liu, J. Zou, J. Zhai, B. Shen, and P. Li, Temperature-Induced High Charge–Discharge Performances in Lead-Free Bi0.5Na0.5TiO3-Based Ergodic Relaxor Ferroelectric Ceramics, Scr. Mater., 2017, 141, p 15–19.

    Article  Google Scholar 

  19. Z. Yu, C. Ang, R. Guo, and A.S. Bhalla, Ferroelectric-Relaxor Behavior of Ba(Ti0.7Zr0.3)O3 Ceramics, J. Appl. Phys., 2002, 92(5), p 2655–2657.

    Article  ADS  CAS  Google Scholar 

  20. G.F. Zhang, M. Cao, H. Hao, and H. Liu, Ferroelectric, Energy Storage Characteristics in Sr(1–1.5x)BixTiO3 Ceramics, Ferroelectric, 2013, 447(1), p 86–94.

    Article  ADS  CAS  Google Scholar 

  21. J. Li, F. Li, Z. Xu, and S. Zhang, Multilayer Lead-Free Ceramic Capacitors with Ultrahigh Energy Density and Efficiency, Adv. Mater., 2018, 30(32), p 1802155.

    Article  Google Scholar 

  22. B. Song, S. Wu, F. Li, P. Chen, and B. Shen, Excellent Energy Storage Density and Charge–Discharge Performance of a Novel Bi0.2Sr0.7TiO3–BiFeO3 Thin Film, J. Mater. Chem. C, 2019, 7, p 10891.

    Article  CAS  Google Scholar 

  23. M.A. Beuerlein, N. Kumar, T.M. Usher, H.J. Brown-Shaklee, N. Raengthon, I.M. Reaney, and G.L. Brennecka, Flexoelectric Characterization of BaTiO3-0.08Bi(Zn1/2Ti1/2)O3, J. Am. Ceram. Soc., 2016, 99(9), p 2849–2870.

    Article  CAS  Google Scholar 

  24. Q. Hu, L. Jin, T. Wang, C. Li, Z. Xing, and X. Wei, Dielectric and Temperature Stable Energy Storage Properties of 0.88 BaTiO3–0.12 Bi (Mg1/2Ti1/2)O3 Bulk Ceramics, J. Alloys Compd., 2015, 640, p 416–420.

    Article  CAS  Google Scholar 

  25. Q. Zhang and Z. Li, Weakly Coupled Relaxor Behavior of BaTiO3–Bi(Mg1/2Ti1/2)O3 Lead-Free Ceramics, J. Adv. Dielectr., 2013, 3(01), p 1320001.

    Article  ADS  Google Scholar 

  26. Z. Yang, H. Du, S. Qu, Y. Hou, H. Ma, J. Wang, and Z. Xu, Significantly Enhanced Recoverable Energy Storage Density in Potassium–Sodium Niobate-Based Lead Free Ceramics, J. Mater. Chem. A, 2016, 4(36), p 13778–13785.

    Article  CAS  Google Scholar 

  27. X. Jiang, H. Hao, S. Zhang, J. Lv, M. Cao, Z. Yao, and H. Liu, Enhanced Energy Storage and Fast Discharge Properties of BaTiO3 Based Ceramics Modified by Bi(Mg1/2Zr1/2)O3, J. Eur. Ceram. Soc., 2019, 39(4), p 1103–1109.

    Article  CAS  Google Scholar 

  28. P. Zhao, Z. Fang, C. Yang, S. Zhang, B. Tang, F. Si, and G. Liu, Structure, Dielectric and Relaxor Properties of Sr0.7Bi0.2TiO3-K0.5Bi0.5TiO3 Lead Free Ceramics for Energy Storage Applications, J. Mater., 2020, 336, p 30146.

    Google Scholar 

  29. J. Chen, F. Si, P. Zhao, S. Zhang, and B. Tang, Novel Lead-Free (1−x)Sr0.7Bi0.2TiO3-xLa(Mg0.5Zr0.5)O3 Energy Storage Ceramics with High Charge–Discharge and Excellent Temperature-Stable Dielectric Properties, Ceram. Int., 2021, 47(18), p 26215–26223.

    Article  CAS  Google Scholar 

  30. G. Liu, H. Fan, G. Dong, J. Shi, and Q. Chang, Enhanced Energy Storage and Dielectric Properties of Bi0.487Na0.427K0.06Ba0.026TiO3-xCeO2 Anti-ferroelectric Ceramics, J. Alloys Compd., 2016, 664, p 632–638.

    Article  CAS  Google Scholar 

  31. S. Liu, Q. Xie, L. Zhang, Y. Zhao, X. Wang, P. Mao, J. Wang, and X. Lou, Tunable Electrocaloric and Energy Storage Behavior in the Ce, Mn Hybrid Doped BaTiO3 Ceramics, J. Eur. Ceram. Soc., 2018, 38, p 4664–4669.

    Article  CAS  Google Scholar 

  32. J. Qi, M. Cao, Y. Chen, Z. He, C. Tao, H. Hao, Z. Yao, and H. Liu, Cerium Doped Strontium Titanate with Stable High Permittivity and Low Dielectric Loss, J Alloys Compd., 2019, 772, p 1105–1112.

    Article  CAS  Google Scholar 

  33. Y.M. Li and J.J. Bian, Effects of Reoxidation on the Dielectric and Energy Storage Properties of Ce-Doped (Ba, Sr)TiO3 Ceramics Prepared by Hot-Pressed Sintering, J. Eur. Ceram. Soc., 2020, 40, p 5441–5449.

    Article  CAS  Google Scholar 

  34. Y. Han, J. Qian, and C. Yang, Time-Stable Giant Energy Density and High Efficiency in Lead Free (Ce, Mn)-Modified (Na0.8K0.2)0.5Bi0.5TiO3 Ceramic Film Capacitor, Ceram. Int., 2019, 45, p 22737–22743.

    Article  Google Scholar 

  35. M.U. Rehman, A. Manan, A. Ullah, Y. Iqbal, Y. Khan, and M.A. Muhammad, Structural, Dielectric and Complex Impedance Analysis of Pb-free BaTiO3-Bi (Mg0.5Ce0.5)O3 Ceramics, J. Alloys Compd., 2023, 947, p 169575.

    Article  CAS  Google Scholar 

  36. X. Zhao, W. Bai, Y. Ding, L. Wang, S. Wu, and P. Zheng, Tailoring High Energy Density with Superior Stability under Low Electric Field in Novel (Bi0.5Na0.5)TiO3-based Relaxor Ferroelectric Ceramics, J. Eur. Ceram. Soc., 2020, 40(13), p 4475–4486.

    Article  CAS  Google Scholar 

  37. H. Wang, H. Yuan, X. Li, F. Zeng, K. Wu, Q. Zheng, and D. Lin, Enhanced Energy Density and Discharged Efficiency of Lead-Free Relaxor (1−x)[(Bi0.5Na0.5)0.94Ba0.06]0.98La0.02TiO3-xKNb0.6Ta0.4O3 Ceramic Capacitors, Chem. Eng. J., 2020, 394, p 124879.

    Article  CAS  Google Scholar 

  38. F. Li, X. Liu, J. Zhao, L. Liu, S. He, and D. Bao, Red-Orange Photoluminescence and Dielectric Relaxation of Eu3+-Doped Bi2Ti2O7 Pyrochlore Structure Thin Films, Mater. Chem. Phys., 2015, 162, p 801–806.

    Article  CAS  Google Scholar 

  39. Q. Guo, L. Li, S. Yu, Z. Sun, H. Zheng, J. Li, and W. Luo, Temperature–Stable Dielectrics Based on Cu-Doped Bi2Mg2/3Nb4/3O7 Pyrochlore Ceramics for LTCC, Ceram. Int., 2018, 44(1), p 333–338.

    Article  CAS  Google Scholar 

  40. C.G. Turner, J.R. Esquivel-Elizondo, and J.C. Nino, The Conductivity and Ionic Transport of Doped Bismuth Titanate Pyrochlore Bi1.6MxTi2O7−δ (M–Mg, Sc, Cu), J. Am. Ceram. Soc., 2014, 97(6), p 1763–1768.

    Article  CAS  Google Scholar 

  41. J.R. Esquivel-Elizondo, B.B. Hinojosa, and J.C. Nino, Bi2Ti2O7: It is Not What You Have Read, Chem. Mater., 2011, 23(22), p 4965–4974.

    Article  CAS  Google Scholar 

  42. C. Cui, Y. Pu, Z. Gao, J. Wan, Y. Guo, C. Hui, and Y. Cui, Structure, Dielectric and Relaxor Properties in Lead-Free ST-NBT Ceramics for High Energy Storage Application, J. Alloys Compd., 2017, 711, p 319–326.

    Article  CAS  Google Scholar 

  43. W. Ma, Y. Zhu, M.A. Marwat, P. Fan, B. Xie, D. Salamon, and H. Zhang, Enhanced Energy-Storage Performance with Excellent Stability under Low Electric Fields In BNT–ST Relaxor Ferroelectric Ceramics, J. Mater. Chem. C, 2019, 7(2), p 281–288.

    Article  CAS  Google Scholar 

  44. D. Li, Y. Lin, M. Zhang, and H. Yang, Achieved Ultrahigh Energy Storage Properties and Outstanding Charge–Discharge Performances in (Na0.5Bi0.5)0.7Sr0.3TiO3-Based Ceramics by Introducing a Linear Additive, Chem. Eng. J., 2020, 392, p 123729.

    Article  CAS  Google Scholar 

  45. X. Huang, H. Hao, S. Zhang, H. Liu, W. Zhang, Q. Xu, and M. Cao, Enhanced Energy Storage and Fast Discharge Properties of BaTiO3 Based Ceramics Modified by Bi (Mg1/2Zr1/2)O3, J. Am. Ceram. Soc., 2014, 97(6), p 1797–1801.

    Article  CAS  Google Scholar 

  46. T. Badapanda, S. Sarangi, B. Behera, S. Parida, S. Saha, T.P. Sinha, and P.K. Sahoo, Optical and Dielectric Study of Strontium Modified Barium Zirconium Titanate Ceramic Prepared by high Energy Ball Milling, J. Alloys Compd., 2015, 645, p 586–596.

    Article  CAS  Google Scholar 

  47. A. Zeb and S.J. Milne, High Temperature Dielectric Ceramics: A Review of Temperature-Stable High-Permittivity Perovskites, J. Mater. Sci. Mater. Electron., 2015, 26(12), p 9243–9255.

    Article  CAS  Google Scholar 

  48. M.J. Pan and C.A. Randall, A Brief Introduction to Ceramic Capacitors, IEEE. Elect. Insul. Mag., 2010, 26(3), p 44–50.

    Article  CAS  Google Scholar 

  49. H. Yang, F. Yan, Y. Lin, and T. Wang, Improvement of Dielectric and Energy Storage Properties in SrTiO3-Based Lead-Free Ceramics, J. Alloys Compd., 2017, 728, p 780–787.

    Article  CAS  Google Scholar 

  50. Y. Wang, J. Cui, Q. Yuan, Y. Niu, Y. Bai, and H. Wang, Significantly Enhanced Breakdown Strength and Energy Density in Sandwich-Structured Barium Titanate/Poly (Vinylidene Fluoride) Nanocomposites, Adv. Mater., 2015, 27(42), p 6658–6663.

    Article  CAS  PubMed  Google Scholar 

  51. R. Jacob, H.G. Nair, and J. Isac, Electrical Characterizations of BaZr0.05Ti0.95O3 Perovskite Ceramic by Impedance Spectroscopy, Electric Modulus and Conductivity, Proc. Appl. Ceram., 2015, 9(2), p 73–79.

    Article  Google Scholar 

  52. I. Rivera, A. Kumar, N. Ortega, R.S. Katiyar, and S. Lushnikov, Divide Line Between Relaxor, Diffused Ferroelectric, Ferroelectric and Dielectric, Solid State Commun., 2009, 149(3–4), p 172–176.

    Article  ADS  CAS  Google Scholar 

  53. L. Jin, F. Li, and S. Zhang, Microstructure and Ferroelectric Properties of Nb2O5-Modified BiFeO3–BaTiO3 Lead-Free Ceramics for Energy Storage, J. Am. Ceram. Soc., 2014, 97(1), p 1–27.

    Article  CAS  Google Scholar 

  54. X. Yang, W. Li, Y. Zhang, Y. Qiao, Y. Yang, and W. Fei, High Energy Storage Density Achieved in Bi3+-Li+ Co-doped SrTi0.99Mn0.01O3 Thin Film via Ionic Pair Doping-Engineering, J. Eur. Ceram. Soc., 2020, 40(3), p 706–711.

    Article  CAS  Google Scholar 

  55. Z. Shen, X. Wang, B. Luo, and L. Li, BaTiO3–BiYbO3 Perovskite Materials for Energy Storage Applications, J. Mater. Chem. A, 2015, 3(35), p 18146–18153.

    Article  CAS  Google Scholar 

  56. C. Zhu, W. Ye, P. Zheng, H. Zhang, F. Lu, Q. Fan, and W. Bai, Fantastic Energy Storage Performances and Excellent Stability in BiFeO3–SrTiO3-Based Relaxor Ferroelectric Ceramics, ACS Appl. Energy Mater., 2022, 5(7), p 8492–8500.

    Article  CAS  Google Scholar 

  57. T. Wang, L. Jin, C. Li, Q. Hu, and X. Wei, Relaxor Ferroelectric BaTiO3–Bi(Mg2/3Nb1/3)O3 Ceramics for Energy Storage Application, J. Am. Ceram. Soc., 2014, 98(2), p 559–566.

    Article  Google Scholar 

  58. F. Li, M. Zhou, J. Zhai, B. Shen, and H. Zeng, Novel Barium Titanate Based Ferroelectric Relaxor Ceramics with Superior Charge–Discharge Performance, J. Eur. Ceram. Soc., 2018, 38(14), p 4646–4652.

    Article  CAS  Google Scholar 

  59. G. Liu, Y. Li, M. Shi, L. Yu, P. Chen, K. Yu, and J. Gao, An Investigation of the Dielectric Energy Storage Performance of Bi(Mg2/3Nb1/3)O3-Modifed BaTiO3 Pb-Free Bulk Ceramics with Improved Temperature/Frequency Stability, Ceram. Int., 2019, 45(15), p 19189–19196.

    Article  CAS  Google Scholar 

  60. X. Zhao, Z. Zhou, R. Liang, F. Liu, and X. Dong, High-Energy Storage Performance in Lead-Free (1−x) BaTiO3-xBi (Zn0.5Ti0.5)O3 Relaxor Ceramics for Temperature Stability Applications, Ceram. Int., 2017, 43(12), p 9060–9066.

    Article  CAS  Google Scholar 

  61. L. Yang, X. Kong, Z. Cheng, and S. Zhang, Ultra-high Energy Storage Performance with Mitigated Polarization Saturation in Lead-Free Relaxors, J. Mater. Chem. A, 2019, 7(14), p 8573–8580.

    Article  CAS  Google Scholar 

  62. X. Kong, L. Yang, Z. Cheng, and S. Zhang, Ultrahigh Energy Storage Properties in (Sr0.7Bi0.2)TiO3-Bi(Mg0.5Zr0.5)O3 Lead-Free Ceramics and Potential for High-Temperature Capacitors, Materials, 2020, 13(1), p 180.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. L.M. Wang, Q.X. Liu and D. Zhou, Dielectric and Energy Storage Properties of the (1−x) BaTiO3-xBi(Li1/3Hf2/3)O3 (0.08≤×≤ 0.14) Ceramics, Mater. Lett., 2021, 283, p 128823.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support extended by Higher Education Commission (HEC), Islamabad Pakistan through the Local Challenge Fund (20-LCF-5/RGM/RF&D/HEC/2020) and National Research Program for Universities (Ref No. 20-17387/NRPU/R&D/HEC/2021 2021) for this work is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Manan.

Ethics declarations

Conflict of interest

The authors have no conflict of interest regarding this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.A., Manan, A., Ur Rehman, M. et al. Enhanced Energy Storage Characteristics of Bi(Mg0.5Ce0.5)O3 Modified (Sr0.7Bi0.2)TiO3 Lead-Free Ceramics. J. of Materi Eng and Perform 33, 1538–1547 (2024). https://doi.org/10.1007/s11665-023-08622-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08622-w

Keywords

Navigation