Skip to main content
Log in

Study on Modification Effect and Mechanism of Pulse Detonation-Plasma Technology Treatment on T8 Steel

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

T8 steel was selected as the experimental material for the pulse detonation-plasma technology (PDT) treatment. The hardness and wear resistance of the PDT treated samples were tested and found to be 2.57 times harder and 72.1% more wear resistant than the matrix part, respectively. To investigate the reasons for this increase in hardness and wear resistance performance, the phase composition and histomorphology of the treated samples were examined using x-ray diffractometer, scanning electron microscopy, and field transmission electron microscopy. The surface of the samples showed melting and the formation of tungsten (W) droplets. The surface layer changed from lamellar pearlite to a mixture of fine-grained martensite and residual austenite, and the W elements penetrated the modified layer, with many dislocations and lattice distortions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. M. Rott, M. Raif and E. Igenbergs, Surface Modification Processes by Hypervelocity Plasma Pulses, Int. J Impact Eng., 2006, 33(1–12), p 691–702. (in English)

    Article  Google Scholar 

  2. V. Shmehey, S. Podoynitsyn and N. Vasilik, Application of the Ballistic Plasmatron of Superadiabatic Compression for Surface Treatment, Surf. Coat Technol., 2006, 200(16–17), p 4939–4946. (in English)

    Google Scholar 

  3. V. Ugloy, V. Anishchik and V. Astashvnsky, Structure and Phase Transformation of Iron Surface Layer Treated by Compression Nitrogen Plasma Flows Surf, Coat Technol., 2004, 180–181(1), p 633–636. (in English)

    Article  Google Scholar 

  4. Y. Chivel and O. Kuznechik, Atmospheric Pressure Pulsed-Periodic Source of High Energy Plasma Flows and Its Applications Surf, Coat Technol., 2011, 205(2), p 347–350. (in English)

    Article  Google Scholar 

  5. U. Okan and V. Remzi, Almen Intensity Effect on Microstructure and Mechanical Properties of Low Carbon Steel Subjected to Severe Shot Peening, Appl. Surf. Sci, 2014, 290(30), p 40–47. (in English)

    Google Scholar 

  6. Y. Todaka, M. Umemoto and J. Liand, Nanocrystallization of Carbon Steels by Shot Peening and Drilling, Rev. Adv. Mater. Sci., 2005, 10(5), p 409–413. (in English)

    CAS  Google Scholar 

  7. H.Y. Cui, R. Wang and D.Q. Wei, Surface Modification of the Carbon Tool Steel by Continuous Scanning Electron Beam Process, Nucl. Instrum. Methods, 2019, 440(1), p 156–162. (in English)

    Article  CAS  Google Scholar 

  8. J. Wu, B. Wang and Y.F. Zhang, Enhanced Wear and Corrosion Resistance of Plasma Electrolytic Carburized Layer on T8 Carbon Steel, Mater. Chem. Phys., 2016, 171(1), p 50–56. (in English)

    Article  CAS  Google Scholar 

  9. A.D. Pogrebnyak, Y.N. Tyurin and A.P. Kobzev, High-speed Plasma Jet Modification and Doping of α-Fe, Tech. Phys. Lett., 2001, 27, p 619–620. (in English)

    Article  CAS  Google Scholar 

  10. S.C. Hsu and E.C. Merritt, Experimental Characterization of Railgun-Driven Supersonic Plasma Jets Motivated by High Energy Density Physics Applications, Phys. Plasmas, 2012, 19(123514), p 123–129. (in English)

    Google Scholar 

  11. J. Zou, C.C. Liu, D.P. Lu, J.M. Yu, Z. Zhou, L.W. Zhang, Q.F. Fu and L. Lu, Microstructure and Properties of Modified Layer on H13 Steel by Pulse-Plasma Detonation Treatment, Heat Treat. Met., 2015, 40(11), p 89–93.

    CAS  Google Scholar 

  12. Y.Y. Özbek, M. Durman and H. Akbulut, Wear Behavior of AISI 8620 Steel Modified by a Pulse Plasma Technique, Tribol. Trans., 2009, 52(2), p 213–222. (in English)

    Article  Google Scholar 

  13. Y.Y. Özbek, Surface Properties of AISI 4140 Steel Modified by Pulse Plasma Technique, J. Mater. Sci. Technol., 2020, 9(2), p 2176–2185. (in English)

    Google Scholar 

  14. Y.Y. Özbek, The Surface Properties of Hot Work Steel Modificated with Pulse Plasma Treatment, Sakarya Üni-versitesi Fen Bilimleri Enstitüsü Dergisi, 2017, 21(2), p 98–104. (in Turkish)

    Google Scholar 

  15. A. Najmeh, N.L. Reza and K. Davood, Particle in Cell Simulations of the Pulsed Plasma Sheath: Dependence on Pulse Parameters, J. Electrostat., 2022, 117, p 103723. (in English)

    Article  Google Scholar 

  16. S.Y. Jiang, H.M. Xu, Y.X. Sun and Y.Q. Song, Performance Analysis of Fe-N Compounds Based on Valence Electron Structure, J. Alloys Compd., 2019, 779, p 427–432. (in English)

    Article  CAS  Google Scholar 

  17. D. Panfil, M. Kulka, P. Wach, J. Michalski and D. Przestacki, Nanomechanical Properties of Iron Nitrides Produced on 42CrMo4 Steel by Controlled Gas Nitriding and Laser Heat Treatment, J. Alloys Compd., 2017, 706, p 63–75. (in English)

    Article  CAS  Google Scholar 

  18. J.C. Díaz-Guillén, G. Vargas-Gutiérrez, E.E. Granda-Gutiérrez, J.S. Zamarripa-Piña, S.I. Pérez-Aguilar, J. Candelas-Ramírez and L. Álvarez-Contreras, Surface Properties of Fe4N Compounds Layer on AISI 4340 Steel Modified by Pulsed Plasma Nitriding, J. Mater. Sci. Technol., 2013, 29(3), p 287–290. (in English)

    Article  Google Scholar 

  19. A. Takase, T. Ishimoto, R. Suganuma and T. Nakano, Lattice Distortion in Selective Laser Melting (SLM)-Manufactured Unstable β-type Ti-15Mo-5Zr-3Al Alloy Analyzed by High-Precision X-ray Diffractometry, Scr. Mater., 2021, 201, p 113953. (in English)

    Article  CAS  Google Scholar 

  20. C. Templier, J.C. Stinville, P. Villechaise, P.O. Renault, G. Abrasonis, J.P. Rivière, A. Martinavičius and M. Drouet, On Lattice Plane Rotation and Crystallographic Structure of the Expanded Austenite in Plasma Nitrided AISI 316L Steel, Surf. Coat. Technol., 2010, 204(16–17), p 2551–2558. (in English)

    Article  CAS  Google Scholar 

  21. M.F.C. Ordoñez, C.L.G. Amorim, I. Krindges, C. Aguzzoli, I.J.R. Baumvol, C.A. Figueroa, A. Sinatora, R.M. Souza and M.C.M. Farias, Microstructure and Micro-abrasive Wear of Sintered Yttria-Containing 316L Stainless Steel Treated by Plasma Nitriding, Surf. Coat. Technol., 2019, 374, p 700–712. (in English)

    Article  Google Scholar 

  22. S.Y. Liu, J.Y. Zhang, J. Kuang, X.Y. Bao, D.D. Zhang, C.L. Zhang, J.K. Yang, G. Liu and J. Sun, Designing Hetero-Structured Ultra-Strong and Ductile Zr-2.5Nb Alloys: Utilizing the Grain Size-Dependent Martensite Transformation During Quenching, J. Mater. Sci. Technol., 2022, 125, p 198–211. (in English)

    Article  CAS  Google Scholar 

  23. M.A. Easton and D.H. StJohn, Improved Prediction of the Grain Size of Aluminum Alloys That Includes the Effect of Cooling Rate, Mater. Sci. Eng. A, 2008, 486(1–2), p 8–13. (in English)

    Article  Google Scholar 

  24. R. Kakitani, R. Oliveira, R.V. Reyes, A.V. Rodrigues, F. Bertelli, A. Garcia and E. José, Spinelli, Noé Cheung, Metal/Mold Thermal Conductance Affecting Ultrafine Scale Microstructures in Aluminum Eutectic Alloys, Case Stud. Therm. Eng., 2021, 26, p 101144. (in English)

    Article  Google Scholar 

  25. X.L. Wang, M.J. He, Z.X. Guo, F. Wang, D.L. Zhou, Z.X. Wu and J.J. Huang, Preliminary Studies on the Main Characteristics and Transient Heat Shock Performances of Detonation Sprayed W Coatings on 316 L Steel Substrates, Surf. Coat. Technol., 2022, 429, p 127946. (in English)

    Article  CAS  Google Scholar 

  26. J. Matějíček, Y. Koza and V. Weinzettl, Plasma Sprayed W-Based Coatings and Their Performance under Fusion Relevant Conditions, Fusion Eng. Des., 2005, 75–79, p 395–399. (in English)

    Article  Google Scholar 

  27. T. Tokunaga, H. Watanabe, N. Yoshida, T. Nagasaka, R. Kasada, Y.J. Lee, A. Kimura, M. Tokitani, M. Mitsuhara, T. Hinoki, H. Nakashima, S. Masuzaki, T. Takabatake, N. Kuroki, K. Ezato, S. Suzuki and M. Akiba, Development of High-grade VPS-W Coatings on F82H Reduced Activation Steel, J. Nucl. Mater., 2013, 442(1–3), p 287–291. (in English)

    Article  Google Scholar 

  28. O. Haiko, V. Javaheri, K. Valtonen, A. Kaijalainen, J. Hannula and J. Kömi, Effect of Prior Austenite Grain Size on the Abrasive Wear Resistance of Ultra-high Strength Martensitic Steels, Wear, 2020, 203336, p 454–455. (in English)

    Google Scholar 

  29. J. Michalski, J. Tacikowski, P. Wach, et al. Formation of Single-Phase Layer of γ′-Nitride in Controlled Gas Nitriding, Met. Sci. Heat Treat., 2005, 47, 516–519

  30. B. Schwartz, H. Goehring, S.R. Meka, R.E. Schacherl, and E.J. Mittemeijer, Pore Formation Upon Nitriding Iron and Iron-Based Alloys: The Role of Alloying Elements and Grain Boundaries Metall, Mater. Trans. A, 2014, 45A, 6173–6186

  31. S.K. Singh, Ch. Naveen, Y. Venkat Sai, U. Satish, Ch. Bandhavi, and R. Subbiah, Experimental Study on Wear Resistance of AISI 347 Treated with Salt Bath Nitriding and Gas Nitriding Processes-A Review, Mater. Today: Proc., 2019, 18(7), 2717–2722

  32. S. Liu and F. Li, The Synthesis of Mono-Dispersed ε-Fe3N Nanoparticles by Gas Phase Reaction with Controlled Annealing Conditions, Mater. Lett., 2018, 221, 161–164

  33. A.M. Kliauga and M. Pohl, Effect of Plasma Nitriding on Wear and Pitting Corrosion Resistance of X2 CrNiMoN 22 5 3 Duplex Stainless Steel, Surf. Coat. Technol., 1998, 98(1–3), 1205–1210

  34. Y.-J. Shi, Y.-L. Du, and G. Chen, First-Principles Study on the Elastic and Electronic Properties of Hexagonal ε-Fe3N, Comput. Mater. Sci., 2013, 67, 341–345

  35. T. Liapina, A. Leineweber, E.J. Mittemeijer, and W. Kockelmann, The Lattice Parameters of ε-iron Nitrides: Lattice Strains Due to a Varying Degree of Nitrogen Ordering, Acta Mater., 2004, 52(1), 173–180.

    Article  CAS  Google Scholar 

  36. C.X. Li and T. Bell, Corrosion Properties of Plasma Nitrided AISI 410 Martensitic Stainless Steel in 3.5% NaCl and 1% HCl Aqueous Solutions, Corros. Sci., 2006, 48(8), 2036–2049.

    Article  CAS  Google Scholar 

  37. H.B. Wang, M. Gee, Q.F. Qiu, H. Zhang, X.M. Liu, H.B. Nie, X.Y. Song and Z.R. Nie, Grain Size Effect on Wear Resistance of WC-Co Cemented Carbides under Different Tribological Conditions, J. Mater. Sci. Technol., 2019, 35(11), p 2435–2446. (in English)

    Article  CAS  Google Scholar 

  38. P.K. Rai, S. Shekhar and K. Mondal, Effects of Grain Size Gradients on the Fretting Wear of a Specially-Processed Low Carbon Steel Against AISI E52100 Bearing Steel, Wear, 2018, 412–413, p 1–13. (in English)

    Article  Google Scholar 

  39. R.N. Dehsorkhi, S. Sabooni, F. Karimzadeh, A. Rezaeian and M.H. Enayati, The Effect of Grain Size and Martensitic Transformation on the Wear Behavior of AISI 304L Stainless Steel, Mater. Des., 2014, 64, p 56–62. (in English)

    Article  Google Scholar 

  40. T.M. Shao, M. Hua and H.Y. Tam, Impact Wear Behavior of Laser Hardened Hypoeutectoid 2Cr13 Martensite Stainless Steel, Wear, 2003, 255(1–6), p 444–455. (in English)

    CAS  Google Scholar 

  41. J.T. Wang, S.G. Qu, F.Q. Lai, Y.Q. Deng and X.Q. Li, Effect of Ultrasonic Surface Rolling on Microstructural Evolution and Fretting Wear Resistance of 20CrMoH Steel Under Different Quenching Temperatures, Mater. Chem. Phys., 2022, 288, p 126362. (in English)

    Article  CAS  Google Scholar 

  42. L.Y. Liao, R. Gao, Z.H. Yang, S.T. Wu and Q. Wan, A Study on the Wear and Corrosion Resistance of High-entropy Alloy Treated with Laser Shock Peening and PVD Coating, Surf. Coat. Technol., 2022, 437, p 128281. (in English)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Foundation: National Natural Science Foundation of China (51961015); Jiangxi Province Major Science and Technology Research and Development Special Project (20194ABC28011); Key R&D project of Jiangxi Province (20192BBE50033)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Zhang, Mm., Yu, Jm. et al. Study on Modification Effect and Mechanism of Pulse Detonation-Plasma Technology Treatment on T8 Steel. J. of Materi Eng and Perform 33, 6468–6479 (2024). https://doi.org/10.1007/s11665-023-08429-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08429-9

Keywords

Navigation