Skip to main content
Log in

Theoretical Calculation and Analysis of Physical and Mechanical Properties of WC-Co Cemented Carbide with Lanthanum

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Doping rare earth elements in WC-Co cemented carbide can make the additives and the original elements form a complex structure, thus further strengthening the overall structure and improving the comprehensive properties of cemented carbide. In this paper, the rare earth element La is added to the cemented carbide WC-Co. Through the construction of atomic cell and interface, the influence of La element on WC-Co cemented carbides is analyzed. The influence law of La atom on other atoms is explained according to analyze the adhesion work, reaction enthalpy, electronic state density and charge density. The results show that more covalent bonds are generated near lanthanum atoms at the interface junction, which enhances the interface bonding strength, makes the whole structure more stable, and the unit cell doped with La element has better stability and improves the overall toughness. The calculation results can provide data for enhancing the performance of cemented carbides and provide a theoretical basis for doping rare earth lanthanum in WC-Co cemented carbides in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. X. Ren, H. Miao, and Z. Peng, A Review of Cemented Carbides for Rock Drilling: An Old but Still Tough Challenge in Geo-Engineering[J], Int. J. Refract. Met. Hard Mater., 2013, 39, p 61–77.

    Article  CAS  Google Scholar 

  2. D. Mari, L. Miguel, and C. Nebel, Comprehensive Hard Materials[M], Newnes, Oxford, 2014.

    Google Scholar 

  3. S.A. Johansson and G. Wahnström, Theory of Ultrathin Films at Metal–Ceramic Interfaces[J], Philos. Mag. Lett., 2010, 90(8), p 599–609.

    Article  CAS  Google Scholar 

  4. V. Pugsley and C. Allen, Microstructure/Property Relationships in the Cavitation Erosion of Tungsten Carbide–Cobalt[J], Wear, 1999, 233, p 93–103.

    Article  Google Scholar 

  5. C. Xu, X. Ai, and C. Huang, Research and Development of Rare-Earth Cemented Carbides[J], Int. J. Refract. Met. Hard Mater., 2001, 19(3), p 159–168.

    Article  CAS  Google Scholar 

  6. Z. Li, W. Zhao, D. Zhang et al., Influence of Rare-Earth Element Doping on Interface and Mechanical Properties of WC Particles Reinforced Steel Matrix Composites[J], Mater. Res. Express, 2021, 8(3), p 036512.

    Article  CAS  Google Scholar 

  7. C. Marques, G. Bobrovnitchii, and J. Holanda, High Pressure Sintering of WC-10Co Doped with Rare-Earth Elements, Sintering of Ceramics—New Emerging Techniques, 2012, p 379–398.

  8. X. Ou, D. Xiao, T. Shen et al., Characterization and Preparation of Ultra-Fine Grained WC-Co Alloys with Minor La-Additions[J], Int. J. Refract. Met. Hard Mater., 2012, 31, p 266–273.

    Article  CAS  Google Scholar 

  9. W. Shao, Y. Zhou, L. Rao, X. Xing, Z. Shi, and Q. Yang, Effect of Cr Doping on Interface Properties of DLC/CrN Composite Coatings: First-Principles Study, Diam. Relat. Mater., 2022, 121, p 108721.

    Article  CAS  Google Scholar 

  10. J. Hu, X. Jian, T. Yang, and X. Peng, Investigation on the Interface Characteristic Between WC(001) and Diamond(111) by First-Principles Calculation, Diam. Relat. Mater., 2022, 123, p 08864.

    Article  Google Scholar 

  11. Z.H. Li, J.L. Feng, Z.X. Wu, M.J. Pang, D. Liu, W.C. Yang, and Y.Z. Zhan, The Stability and Electronic Structure of Cu(2 0 0)/AuCu(2 0 0) Interface: An Insight from First-Principle Calculation, Materials, 2022, 15, p 1506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. C. Allibert, Sintering Features of Cemented Carbides WC-Co Processed from Fine Powders[J], Int. J. Refract. Met. Hard Mater., 2001, 19(1), p 53–61.

    Article  CAS  Google Scholar 

  13. J.-M. Missiaen, Solid-State Spreading and Sintering of Multiphase Materials[J], Mater. Sci. Eng. A, 2008, 475(1–2), p 2–11.

    Article  Google Scholar 

  14. A. Yang, Y. Duan, and M. Peng et al., Revealing the Interface Characteristic of the Semi-Coherent Co (111)/WC (0001) Interface: A First Principles Investigation[J], Philos. Mag., 2022, 102, p 1–25.

    Article  CAS  Google Scholar 

  15. Z.P. Hao, Y. Qiu, Y.H. Fan et al., Theoretical Calculation and Analysis of New Rare Earth Cemented Carbide Based on First-Principles[J], Int. J. Refract. Met. Hard Mater., 2021, 101, p 105688.

    Article  CAS  Google Scholar 

  16. J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple[J], Phys. Rev. Lett., 1996, 77(18), p 3865.

    Article  CAS  PubMed  Google Scholar 

  17. M. Christensen and G. Wahnström, Effects of Cobalt Intergranular Segregation on Interface Energetics in WC-Co[J], Acta Mater., 2004, 52(8), p 2199–2207.

    Article  CAS  Google Scholar 

  18. J.P. Perdew and Y. Wang, Erratum: Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy [J], Phys. Rev. B, 2018, 98(7), p 079904.

    Article  Google Scholar 

  19. H.J. Monkhorst and J.D. Pack, Special Points for Brillouin-Zone Integrations[J], Phys. Rev. B, 1976, 13(12), p 5188.

    Article  Google Scholar 

  20. G. Kresse and J. Furthmüller, Efficient Iterative Schemes for ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set[J], Phys. Rev. B, 1996, 54(16), p 11169.

    Article  CAS  Google Scholar 

  21. B.G. Pfrommer, M. Côté, S.G. Louie et al., Relaxation of Crystals with the Quasi-Newton Method[J], J. Comput. Phys., 1997, 131(1), p 233–240.

    Article  CAS  Google Scholar 

  22. V.G. Zavodinsky, Cobalt Layers Crystallized on the WC (100) Surface: Spin-Polarized ab Initio Study[J], Int. J. Refract. Met. Hard Mater., 2011, 29(2), p 184–187.

    Article  CAS  Google Scholar 

  23. X. Zhao, Y. Zhuo, S. Liu et al., Investigation on WC/TiC Interface Relationship in Wear-Resistant Coating by First-Principles[J], Surf. Coat. Technol., 2016, 305, p 200–207.

    Article  CAS  Google Scholar 

  24. Na. Jin, Y. Yang, J. Li, X. Luo, B. Huang, Q. Sun, and P. Guo, First-Principles Calculation on Î2-SiC (1 1 1) /α-WC (0 0 0 1) Interface[J], J. Appl. Phys., 2014, 115(22), p 5811–5836.

    Article  Google Scholar 

  25. J. Yang, Z. Ye, J. Huang et al., First-Principles Calculations on Wetting Interface Between Ag-Cu-Ti Filler Metal and SiC Ceramic: Ag (1 1 1)/SiC (1 1 1) Interface and Ag (1 1 1)/TiC (1 1 1) Interface[J], Appl. Surf. Sci., 2018, 462, p 55–64.

    Article  CAS  Google Scholar 

  26. M. Christensen, S. Dudiy, and G. Wahnström, First-Principles Simulations of Metal-Ceramic Interface Adhesion: Co/WC vs. Co/TiC[J], Phys. Rev. B, 2002, 65(4), p 045408.

    Article  Google Scholar 

  27. J.R. Yang, B.F. Ren, and S.L. Li, Effect of SiC Interlayer on Interfacial Adhesion of Diamond Coated Cemented Carbide Tool Film Base [J], J. Synth. Cryst., 2019, 48(3), p 428–435. ((In Chinses))

    CAS  Google Scholar 

  28. H. Chen, L. Yang, and J. Long, First-Principles Investigation of the Elastic, Vickers Hardness and Thermodynamic Properties of Al-Cu Intermetallic Compounds[J], Superlattices Microstruct., 2015, 79, p 156–165.

    Article  CAS  Google Scholar 

  29. Z.-J. Wu, E.-J. Zhao, H.-P. Xiang et al., Crystal Structures and Elastic Properties of Superhard IrN2 and IrN3 from First Principles[J], Phys. Rev. B, 2007, 76(5), p 054115.

    Article  Google Scholar 

  30. R. Hill, The Elastic Behaviour of a Crystalline Aggregate[J], Proc. Phys. Soc. Sect. A, 1952, 65(5), p 349.

    Article  Google Scholar 

  31. E.J. Zhao and H.P. Xiang, Crystal Structures and Elastic Properties of Superhard IrN2 and IrN3 from First Principles [J], Phys. Rev. B, 2007, 76(5), p 054115.

    Article  Google Scholar 

  32. Y. Li, Y. Gao, B. Xiao et al., The Electronic, Mechanical Properties and Theoretical Hardness of Chromium Carbides by First-Principles Calculations[J], J. Alloys Compd., 2011, 509(17), p 5242–5249.

    Article  CAS  Google Scholar 

  33. S. Pugh, Relations Between the Elastic Moduli and the Plastic Properties of Polycrystalline Pure Metals[J], Lond. Edinb. Dublin Philos. Mag. J. Sci., 1954, 45(367), p 823–843.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (52275404), Natural Science Foundation of Jilin Province (YDZJ202301ZZYTS484), Key industrial technology research project of Jilin Province (20210201043GX), Project of Science and Technology Bureau of Changchun City, Jilin Province (21ZY40). This work is also supported by Key Laboratory for International Cooperation in High-performance Manufacturing and Testing of Jilin Province (20220502003GH), and Key Laboratory of Micro/Nano and Ultra-Precision Manufacturing of Jilin Province (20140622008JC)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaopeng Hao.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Wang, W. & Hao, Z. Theoretical Calculation and Analysis of Physical and Mechanical Properties of WC-Co Cemented Carbide with Lanthanum. J. of Materi Eng and Perform 33, 3582–3591 (2024). https://doi.org/10.1007/s11665-023-08246-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08246-0

Keywords

Navigation