Skip to main content
Log in

Effect of Compressive Creep Aging on Microstructure and Properties of Al-x%Li-0.1%Sc Alloy

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effect of different compression creep parameters on the creep behavior and microstructure of Al-x%Li-0.1%Sc alloy was studied. The Al-Li-Sc alloy with Li content of 1, 3 and 5% and Sc content of 0.1% was subjected to creep compression treatment for 24 h at 155, 175, 245, 285 and 325 °C. It is found that when the effective temperature and time are the same, the higher the content of Li in the sample, the more and finer the equiaxed grains, and the higher the microhardness of the corresponding sample. Additionally, it can be found that the alloys have different texture densities and the phenomenon of Al3Li and Al3 (Sc, Li) precipitates pinning dislocations at different temperature result in different properties with different Li contents under different creep parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Lin, C.G. Lu, C.Y. Wei, and Z.Q. Zheng, Effect of Aging Treatment on Microstructures, Tensile Properties and Intergranular Corrosion Behavior of Al–Cu–Li Alloy, Mater. Charact., 2018, 141, p 163–168.

    Article  CAS  Google Scholar 

  2. H.Y. Li, W. Kang, and X.C. Lu, Effect of Age-Forming on Microstructure, Mechanical and Corrosion Properties of a Novel Al–Li Alloy, J. Alloy. Compd., 2015, 640, p 210–218.

    Article  CAS  Google Scholar 

  3. K. Du, J.Q. Wang, H.R. Cao and C. Liu, Research Progress and Development Trend of Al-Li Alloys for Aerospace Applications, Alum. Fabrication, 2022, 02, p 3–9.

    Google Scholar 

  4. R.J.H. Wanhill, N.E. Prasad, and A.A. Gokhale, Historical Development and Present Status of Aluminum–Lithium Alloys, Aluminum-Lithium Alloys: Processing, Properti es, and Applications, R.J.H. Wanhill, N.E. Prasad, A.A. Gokhale, Ed., (Oxford), Elsevier Butterworth Heinemann, 2013, p 3–26.

  5. C.H. Liu, J.S. Yang, P.P. Ma, Z.Y. Ma, L.H. Zhan, K.L. Chen et al., Large Creep Formability and Strength–Ductility Synergy Enabled by Engineering Dislocations in Aluminum Alloys, Int. J. Plast, 2020, 134, p 102774.

    Article  CAS  Google Scholar 

  6. A.C.L. Lam, Z. Shi, H. Yang, L. Wan, M.D. Catrin, J.G. Lin et al., Creep-age Forming AA2219 Plates with Different Stiffener Designs and Pre-form Age Conditions: Experimental and Finite Element Studies, J. Mater. Process. Technol., 2015, 219, p 155–163.

    Article  CAS  Google Scholar 

  7. K. Chen, L.H. Zhan, Y.Q. Xu, and Y.Z. Liu, Effect of Pulsed Current Density on Creep-Aging Behavior and Microstructure of AA7150 Aluminum Alloy, J. Market. Res., 2020, 9, p 15433–15441.

    CAS  Google Scholar 

  8. Y.L. Yang, L.H. Zhan, C.H. Liu, Y.Q. Xu, G.P. Li, X.T. Wu et al., Tension-Compression Asymmetry of Stress-Relaxation Aging Behavior of AA2219 Alloy Over a Wide Range of Stress Levels, Mater. Sci. Eng., A, 2021, 823, p 141730.

    Article  CAS  Google Scholar 

  9. A.A. El-Aty, Y. Xu, X.Z. Guo, S.H. Zhang, Y. Ma, and D.Y. Chen, Strengthening Mechanisms, Deformation Behavior, and Anisotropic Mechanical Properties of Al-Li Alloys: A Review, J. Adv. Res., 2018, 10, p 49–67.

    Article  Google Scholar 

  10. T. Dursun and C. Soutis, Recent Developments in Advanced Aircraft Aluminium Alloys, Mater. Des., 2014, 56, p 862–871.

    Article  CAS  Google Scholar 

  11. X.Y. Chen, L.H. Zhan, Y.Q. Xu, Z.Y. Ma, and Q.P. Zheng, Anisotropy in Creep Aging Behavior of Textured al-cu Alloy under Different Stress States, Mater. Charact., 2020, 168, p 110539.

    Article  CAS  Google Scholar 

  12. L.H. Chen, C.H. Liu, P.P. Ma, J.S. Yang, L.H. Zhan, and M.H. Huang, Strong In-plane Anisotropy of Creep Aging Behavior in Largely Pre-deformed Al-Cu Alloy: Experiments and Constitutive Modeling, Int. J. Plast, 2022, 152, p 103245.

    Article  CAS  Google Scholar 

  13. T.J. Bian, H. Li, J.C. Yang, C. Lei, C.H. Wu, L.W. Zhang et al., Through-Thickness Heterogeneity and In-plane Anisotropy in Creep Aging of 7050 Al Alloy, Mater. Des., 2020, 196, p 109190.

    Article  CAS  Google Scholar 

  14. C.P. Tong, Y. Li, and Z.S. Shi, Investigation of Anisotropic Creep-aging Behaviour of Al-Cu-Li Alloy AA2050, Proced. Manufact., 2020, 50, p 241–247.

    Article  Google Scholar 

  15. N.H. Peng, L.H. Zhan, Y.Q. Xu, C.H. Liu, B.L. Ma, K. Chen et al., Anisotropy in Creep-Aging Behavior of Al–Li Alloy under Different Stress Levels: Experimental and Constitutive Modeling, J. Market. Res., 2022, 20, p 3456–3470.

    CAS  Google Scholar 

  16. M.X. Wang, K. Cen, Z.X. Liu, T.F. Song, S.J. Wang, Z.Y. Liu et al., Effect of Scandium on the Age-hardening Behavior of Al-Li Alloy, Trans. Mater. Heat Treatm., 2022, 02, p 61–65.

    Google Scholar 

  17. X.Y. Wang, Q.L. Pan, C.R. Zou, W.J. Liang, and Z.M. Ying, Resent Situation and Development Trend of Sc Containing Al-Li Alloy, Chinese Rare Earths, 2005, 26, p 70–75.

    Google Scholar 

  18. X.F. Wu, K.Y. Wang, F.F. Wu, R.D. Zhao, M.H. Chen, J. Xiang et al., Simultaneous Grain Refinement and Eutectic MgSi Modification in Hypoeutectic Al-11MgSi Alloys by Sc Addition22, J. Alloy. Compd., 2019, 791, p 402–410.

    Article  CAS  Google Scholar 

  19. Y.H. Gao, J. Kuang, J.Y. Zhang, G. Liu, and J. Sun, Tailoring Precipitation Strategy to Optimize Microstructural Evolution, Aging Hardening and Creep Resistance in an Al–Cu–Sc Alloy by Isochronal Aging, Mater. Sci. Eng. A, 2020, 795, p 139943.

    Article  CAS  Google Scholar 

  20. Y. Peng, Z. Yin, X. Lei, Q. Pan, and Z. He, Microstructure and Properties of Friction Stir Welded Joints of Al-Mg-Sc Alloy Plates, Rare Metal Mater. Eng., 2011, 40, p 201–205.

    Article  CAS  Google Scholar 

  21. O. Prach, O. Trudonoshyn, P. Randelzhofer, C. Körner, and K. Durst, Multi-Alloying Effect of Sc, Zr, Cr on the Al-Mg-Si-Mn High-Pressure Die Casting Alloys, Mater. Charact., 2020, 168, p 110537.

    Article  CAS  Google Scholar 

  22. P. Xia, S.C. Wang, H.L. Huang, N. Zhou, D.F. Song, and Y.W. Jia, Effect of Sc and Zr Additions on Recrystallization Behavior and Intergranular Corrosion Resistance of Al-Zn-Mg-Cu Alloys, Materials, 2021, 14, p 5516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. C.C. Shi, G.H. Wu, L. Zhang, X.L. Zhang, J.W. Sun, and J.S. Zhang et al., Microstructure and Mechanical Properties of Casting Al-3Li-2Mg-1Zn-0.1Zr Alloys Modified by Sc Additions, Journal of Alloys and Compounds, 2021, 885, p 161106.

    Article  CAS  Google Scholar 

  24. T. Dorin, M. Ramajayam, J. Lamb, and T. Langan, Effect of Sc and Zr Additions on the Microstructure/Strength of Al-Cu Binary Alloys, Mater. Sci. Eng., A, 2017, 707, p 58–64.

    Article  CAS  Google Scholar 

  25. M. Vlach, J. Čížek, B. Smola, O. Melikhova, M. Vlček, and V. Kodetová et al., Heat Treatment and Age Hardening of Al–Si–Mg–Mn Commercial Alloy with Addition of Sc and Zr, Mater. Charact., 2017, 129, p 1–8.

    Article  CAS  Google Scholar 

  26. N.R. Bochvar, O.V. Rybalchenko, N.P. Leonova, N.Y. Tabachkova, G.V. Rybalchenko, and L.L. Rokhlin, Effect of Cold Plastic Deformation and Subsequent Aging on the Strength Properties of Al-Mg2Si Alloys with Combined (Sc + Zr) and (Sc + Hf) Additions, J. Alloy. Compd., 2020, 821, p 153426.

    Article  CAS  Google Scholar 

  27. S.K. Tian, J.Y. Li, J.L. Zhang, Z. Wulabieke, and D. Lv, Effect of Zr and Sc on Microstructure and Properties of 7136 Aluminum Alloy, J. Market. Res., 2019, 8, p 4130–4140.

    CAS  Google Scholar 

  28. Y. Harada and D. Dunand, Microstructure of Al3Sc with Ternary Transition-Metal Additions, Mater. Sci. Eng. A, 2022, 329, p 686–695.

    Google Scholar 

  29. J.Y. Zhang, X.Y. Jiang, M.Y. Ma, B. Jiang, B. Wang, and D.Q. Yi, Effect of Scandium Micro-Alloying on the Creep Resistance Properties of Al-0.7Fe Alloy Cables, Mater. Sci. Eng. A, 2017, 699, p 194–200.

    Article  CAS  Google Scholar 

  30. X.Y. Liu, Q.L. Pan, X.L. Zhang, X.L. Shun, F. Gao, and L.Y. Zheng et al., Creep Behavior and Microstructural Evolution of Deformed Al–Cu–Mg–Ag Heat Resistant Alloy, Mater. Sci. Eng. A, 2014, 599, p 160–165.

    Article  CAS  Google Scholar 

  31. Y.C. Lin, X. Peng, Y. Jiang, and C. Shuai, Effects of Creep-Aging Parameters on Aging Precipitates of a Two-stage Creep-aged Al-Zn-Mg-Cu Alloy Under the Extra Compressive Stress, J. Alloy. Compd., 2018, 743, p 448–455.

    Article  CAS  Google Scholar 

  32. L.H. Zhan, J. Lin, T.A. Dean, and M. Huang, Experimental Studies and Constitutive Modelling of the Hardening of Aluminium Alloy 7055 Under Creep Age Forming Conditions, Int. J. Mech. Sci., 2011, 53, p 595–605.

    Article  Google Scholar 

  33. F.J. Humphreys and M. Hatherly, Recrystallization of Two-Phase Alloys, Recrystallization and Related Annealing Phenomena, 2nd Ed FJ Humphreys and M Hatherly Ed, (Oxford), Elsevier Butterworth Heinemann, 2004, p 285–319.

  34. Y.T. Zhao and G. Chen, Design of metal matrix composites, Metal Matrix Composites, Y.T. Zhao and G. Chen (Ed.) (China). China Machine Press, 2019, p 52–53

  35. J.Y. Zhang, H.X. Wang, D.Q. Yi, B. Wang, and H.S. Wang, Comparative study of Sc and Er addition on microstructure, mechanical properties, and electrical conductivity of Al-0.2Zr-based alloy cables, Mater. Character., 2018, 145, p 126–134.

    Article  CAS  Google Scholar 

  36. Y.F. Zeng, X.R. Cai, and M. Koslowski, Effects of the Stacking Fault Energy Fluctuations on the Strengthening of Alloys, Acta Mater., 2019, 164, p 1–11.

    Article  CAS  Google Scholar 

  37. M. Shih, J.S. Miao, M. Mills, and M. Ghazisaeidi, Stacking Fault Energy in Concentrated Alloys, Nat. Commun., 2021, 3590, p 12.

    Google Scholar 

  38. Q. Ding, Tuning Element Distribution, Structure and Properties by Composition in High-Entropy Alloys, Nature, 2019, 574, p 223–227.

    Article  CAS  PubMed  Google Scholar 

  39. H. Li, H.X. Zong, S.Z. Li, S.B. Jin, Y. Chen, and M.J. Cabral et al., Uniting Tensile Ductility with Ultrahigh Strength via Composition Undulation, Nature, 2022, 604, p 273–279.

    Article  CAS  PubMed  Google Scholar 

  40. J.Y. Zhang, Z.X. Chen, and H. Wang, Quasi in-situ Analysis of Compressive Creep Behaviors and Microstructure Evolutions in Al–Zr Alloys With Sc and Er Additions, Mater. Sci. Eng., A, 2022, 852, p 143650.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors feel grateful to the Jiangxi technological innovation guidance program (International Science and technology cooperation project, Grant No: 20212BDH81005), Jiangxi science and technology research Youth Project (Grant No: GJJ210881), and the start-up fund of scientific research of Jiangxi University of Technology (Grant No: 205200100544) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiayi Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, D., Chen, J. & Zhang, J. Effect of Compressive Creep Aging on Microstructure and Properties of Al-x%Li-0.1%Sc Alloy. J. of Materi Eng and Perform 33, 3592–3602 (2024). https://doi.org/10.1007/s11665-023-08242-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08242-4

Keywords

Navigation