Skip to main content
Log in

The Combined Effect of Direct Current Polarization, Ultraviolet Radiation, and Saline Immersion on the Degradation of an Epoxy Coating

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The corrosion damage of an epoxy coating/metal system was accelerated by different cyclic tests. Electrochemical impedance spectroscopy (EIS), optical microscopy, laser microscopy, adhesion measurement, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) were employed to reveal the degradation processes of the coating/metal system in these tests. The results showed that the test of cyclic polarization in immersion dramatically accelerated the corrosion of the metallic substrate. It is interesting that the alternating simple immersion and UV irradiation could slightly retard the coating damage in the first 15 days, whereas the alternating UV irradiation in air and electrochemical polarization in immersion could speed up the damage, which might better simulate the degradation of the coating/steel system in the marine tidal zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. T.H. Mekonnen, T. Haile, and M. Ly, Hydrophobic Functionalization of Cellulose Nanocrystals for Enhanced Corrosion Resistance of Polyurethane Nanocomposite Coatings, Appl. Surf. Sci., 2021, 540, p 148299.

    Article  CAS  Google Scholar 

  2. Y.J. He, I. Dobryden, J.S. Pan, A. Ahniyaz, T. Deltin, R.W. Corkery, and P.M. Claesson, Nano-Scale Mechanical and Wear Properties of a Waterborne Hydroxyacrylic-Melamine Anti-Corrosion Coating, Appl. Surf. Sci., 2018, 457, p 548–558.

    Article  CAS  Google Scholar 

  3. N. Gladkikh, Y. Makarychev, M. Petrunin, M. Maleeva, L. Maksaeva, and A. Marshakov, Synergistic Effect of Silanes and Azole for Enhanced Corrosion Protection of Carbon Steel by Polymeric Coatings, Prog. Org. Coat., 2020, 138, p 105386.

    Article  CAS  Google Scholar 

  4. M. Gao, J. Wang, Y. Zhou, M. Morshed, Z. Wang, and S. Zhao, Bifunctional Oxygen-Vacancy Abundant Perovskite Nanosheets for Improving Protective Performance of Epoxy Coatings, Prog. Org. Coat., 2019, 137, p 105301.

    Article  CAS  Google Scholar 

  5. X. Yong, X. Hu, L. Jiang, Q. Ma, and R. Chen, Damage Assessment of the Corrosion-Resistant Performances for Organic Coating Systems After Accelerated Tests Using Analytic Hierarchy Process, Eng. Failure Anal., 2018, 93, p 1–12.

    Article  CAS  Google Scholar 

  6. Z. Feng, G.L. Song, Z.M. Wang, Y. Xu, D. Zheng, P. Wu, and X. Chen, Salt Crystallization-Assisted Degradation of Epoxy Resin Surface in Simulated Marine Environments, Prog. Org. Coat., 2020, 149, p 105932.

    Article  CAS  Google Scholar 

  7. Z. Zhang, J. Wu, X. Zhao, Y. Zhang, Y. Wu, T. Su, and H. Deng, Life Evaluation of Organic Coatings on Hydraulic Metal Structures, Prog. Org. Coat., 2020, 148, p 105848.

    Article  CAS  Google Scholar 

  8. Z. Zhang, J. Wu, T. Su, X. Mo, H. Deng, Y. Wu, and Y. Zhang, Life Prediction for Anticorrosive Coatings on Steel Bridges, Corrosion, 2020, 76(8), p 773–785.

    Article  CAS  Google Scholar 

  9. Y. Xu, J. Ran, W. Dai, and W. Zhang, Investigation of Service Life Prediction Models for Metallic Organic Coatings Using Full-Range Frequency EIS Data, Metals, 2017, 7(7), p 274.

    Article  Google Scholar 

  10. T.J. Hammer, C. Pugh, and M.D. Soucek, Ultraviolet-Curable Cycloaliphatic Polyesters Containing Spiroacetal Moieties for Application as Powder Coatings, ACS Appl. Polym. Mater., 2022, 4(4), p 2294–2305.

    Article  CAS  Google Scholar 

  11. A. Hadzich, S. Flores, J. Caprari, and R. Romagnoli, Study of Zinc Tannates Prepared with Tara Powder (Caesalpinia spinosa) as Anticorrosive Pigments in Alkyd Paints and Wash Primer Formulations, Prog. Org. Coat., 2018, 117, p 35–46.

    Article  CAS  Google Scholar 

  12. M. Fedel, J. Franch, and S. Rossi, Effect of Thickness and Sealing Treatments on the Corrosion Protection Properties of Anodic Oxide Coatings on AA5005, Surf. Coat. Technol., 2021, 408, p 126761.

    Article  CAS  Google Scholar 

  13. Standard Practice for Operating Fluorescent Ultraviolet (UV) Lamp Apparatus for Exposure of Nonmetallic Materials. ASTM G154-16, 2016, p 1–11.

  14. V. Upadhyay, K.N. Allahar, and G.P. Bierwagen, Environmental Humidity Influence on a Topcoat/Mg-Rich Primer System with Embedded Electrodes, Sensor. Actuators B Chem., 2014, 193, p 522–529.

    Article  CAS  Google Scholar 

  15. S.M.V. Gutierrez, D.W. Stone, R. He, P.T.V. Gutierrez, Z.M. Walsh, and S.C. Robinson, Potential Use of the Pigments from Scytalidium cuboideum and Chlorociboria aeruginosa to Prevent “Greying” Decking and Other Outdoor Wood Products, Coatings, 2021, 11(5), p 511.

    Article  CAS  Google Scholar 

  16. Standard Practice for Cyclic Salt fog/UV Exposure of Painted Metal. ASTM D5894-16, 2016, p 1–3.

  17. R. Davalos-Monteiro, G. D’Ambrosio, X. Zhou, S. Gibbon, and M. Curioni, Relationship Between Natural Exposure Testing and Cyclic Corrosion Testing ISO 20340 for the Assessment of the Durability of Powder-Coated Steel, Corros. Eng. Sci. Technol., 2021, 56(8), p 742–752.

    Article  CAS  Google Scholar 

  18. D. Mizuno, Automotive Corrosion and Accelerated Corrosion Tests for Zinc Coated Steels, Isij Int., 2018, 58(9), p 1562–1568.

    Article  CAS  Google Scholar 

  19. T. Miwa, Y. Takeshita, A. Ishii, and T. Sawada, Simulation of Water Absorption and Desorption Behavior for Anti-Corrosion Coatings in Existing and New Accelerated Corrosion Tests, Prog. Org. Coat., 2018, 120, p 71–78.

    Article  CAS  Google Scholar 

  20. J. Hollaender, Rapid Assessment of Food/Package Interactions by Electrochemical Impedance Spectroscopy (EIS), Food Addit. Contam., 1997, 14(6–7), p 617–626.

    Article  CAS  PubMed  Google Scholar 

  21. H.V. Weidje, D. Mills, and G. Bierwagen, International Workshop on Application of Electrochemical Techniques to Organic Coatings, Prog. Org. Coat., 2000, 39, p 3–5.

    Google Scholar 

  22. M.T. Rodriguez, J.J. Gracenea, S.J. Garcia, J.J. Saura, and J.J. Suay, Testing the Influence of the Plasticizers Addition on the Anticorrosive Properties of an Epoxy Primer by Means of Electrochemical Techniques, Prog. Org. Coat., 2004, 50(2), p 123–131.

    Article  CAS  Google Scholar 

  23. Q. Su, K. Allahar, and G. Bierwagen, Embedded Electrode Electrochemical Noise Monitoring of the Corrosion Beneath Organic Coatings Induced by Ac-Dc-Ac Conditions, Electrochim. Acta, 2008, 53(6), p 2825–2830.

    Article  CAS  Google Scholar 

  24. L.D.C. Cuttone, S.I. Cristini, M. Trueba, and S.P. Trasatti, Electrochemical Investigation of Polyaniline Blends on Galvanized Steel, Prog. Org. Coat., 2016, 96, p 65–79.

    Article  Google Scholar 

  25. S.J. García and J. Suay, Application of Electrochemical Techniques to Study the Effect on the Anticorrosive Properties of the Addition of Ytterbium and Erbium Triflates as Catalysts on a Powder Epoxy Network, Prog. Org. Coat., 2006, 57(3), p 273–281.

    Article  Google Scholar 

  26. S.J. García and J. Suay, Epoxy Powder Clearcoats used for Anticorrosive Purposes Cured with Ytterbium III Trifl Uoromethanesulfonate, Corrosion, 2007, 63, p 379–390.

    Article  Google Scholar 

  27. M. Puig, M.J. Gimeno, J.J. Gracenea, and J.J. Suay, Anticorrosive Properties Enhancement in Powder Coating Duplex Systems by Means of ZMP Anticorrosive Pigment. Assessment by Electrochemical Techniques, Prog. Org. Coat., 2014, 77(12), p 1993–1999.

    Article  CAS  Google Scholar 

  28. S.J. García, M.T. Rodríguez, R. Izquierdo, and J. Suay, Evaluation of Cure Temperature Effects in Cataphoretic Automotive Primers by Electrochemical Techniques, Prog. Org. Coat., 2007, 60(4), p 303–311.

    Article  Google Scholar 

  29. S.J. García and J. Suay, A Comparative Study Between the Results of Different Electrochemical Techniques (EIS and AC/DC/AC), Prog. Org. Coat., 2007, 59(3), p 251–258.

    Article  Google Scholar 

  30. M. Poelman, M.G. Olivier, N. Gayarre, and J.P. Petitjean, Electrochemical Study of Different Ageing Tests for the Evaluation of a Cataphoretic Epoxy Primer on Aluminium, Prog. Org. Coat., 2005, 54(1), p 55–62.

    Article  CAS  Google Scholar 

  31. R. Fragni, C. Zurlini, A. Montanari, V. Kiroplastis, and F. Peñalba, Adhesion Improvement of the UV Lacquers for Food Cans by Applying a Post-Curing Current Treatment, Prog. Org. Coat., 2006, 55(3), p 254–261.

    Article  CAS  Google Scholar 

  32. B.J. Usman, F. Scenini, and M. Curioni, Exploring the Use of an AC-DC-AC Technique for the Accelerated Evaluation of Anticorrosion Performance of Anodic Films on Aluminium Alloys, Prog. Org. Coat., 2020, 144, p 105648.

    Article  CAS  Google Scholar 

  33. Paints and Varnishes–Guidelines for the Determination of Anticorrosive Properties of Organic Coatings by Accelerated Cyclic Electrochemical Technique. ISO 17463, 2014, p 1–27.

  34. T. da Silva Lopes, T. Lopes, D. Martins, C. Carneiro, J. Machado, and A. Mendes, Accelerated Aging of Anticorrosive Coatings: Two-Stage Approach to the AC/DC/AC Electrochemical Method, Prog. Org. Coat., 2020, 138, p 105365.

    Article  Google Scholar 

  35. M.A. Zadeh, S.V. Zwaag, and S.J. García, Assessment of Healed Scratches in Intrinsic Healing Coatings by AC/DC/AC Accelerated Electrochemical Procedure, Surf. Coat. Technol., 2016, 303, p 396–405.

    Article  Google Scholar 

  36. Y. Xu, G.-L. Song, D. Zheng, and Z. Feng, The Corrosion Damage of an Organic Coating Accelerated by Different AC-DC-AC Tests, Eng. Failure Anal., 2021, 126, p 105461.

    Article  CAS  Google Scholar 

  37. D. Zheng, Q. Gui, Y. Xu, and G.-L. Song, Modified AC-DC-AC Method for Evaluation of Corrosion Damage of Acrylic Varnish Paint Coating/Q215 Steel System, Prog. Org. Coat., 2021, 159, p 106401.

    Article  CAS  Google Scholar 

  38. H. Wang, P. Feng, Y. Lv, Z. Geng, Q. Liu, and X. Liu, A Comparative Study on UV Degradation of Organic Coatings for Concrete: Structure, Adhesion, and Protection Performance, Prog. Org. Coat., 2020, 149, p 105892.

    Article  CAS  Google Scholar 

  39. G. Cai, D. Zhang, D. Jiang, and Z. Dong, Degradation of Fluorinated Polyurethane Coating Under UVA and Salt Spray. Part II: Molecular Structures and Depth Profile, Prog. Org. Coat., 2018, 124(11), p 25–32.

    Article  CAS  Google Scholar 

  40. S.Y. Du, Y. Zhang, M.J. Meng, A. Tang, and Y. Li, The Role of Water Transport in the Failure of Silicone Rubber Coating for Implantable Electronic Devices, Prog. Org. Coat., 2021, 159, p 106419.

    Article  CAS  Google Scholar 

  41. K. Tokutake, S. Okazaki, and S. Kodama, Investigation of Accelerated Degradation Methods to Cause Blisters for Non-Defective Vinyl Ester Resin Glass Flake Organic Coatings, Coatings, 2022, 12(1), p 76–97.

    Article  CAS  Google Scholar 

  42. Y.Q. Xu, G.L. Song, and D.J. Zheng, Prediction of Long-Term Service Life of an Organic Coating Based on Short-Term Exposure Results, Anticorros. Method Mater., 2022, 69(3), p 269–278.

    Article  CAS  Google Scholar 

  43. Paints and Varnishes-Colorimetry. Part 2, ISO 7724-2, 1984, p 1–9.

  44. Paints and Varnishes-Colorimetry. Part 3, ISO 7724-3, 1984, p 1–6.

  45. N.S.A. Manah, L. Sulaiman, N.L.S.M. Azman, Z.H.Z. Abidin, H.A. Tajuddin, and N.A. Halim, Colour Analysis of Organic Synthetic Dye Coating Paint Films Consisting 4-Hydroxycoumarin Derivatives After Exposed to UV-A, Mater. Res. Express, 2019, 6(7), p 076418.

    Article  CAS  Google Scholar 

  46. A.W. Momber, M. Irmer, N. Glück, and P. Plagemann, Corrosion Protection Performance of Organic Offshore Coating Systems at −60 °C Temperature Shock, J. Offshore Mech. Arct., 2016, 138(6), p 064501.

    Article  Google Scholar 

  47. A.W. Momber, P. Plagemann, and V. Stenzel, The Adhesion of Corrosion Protection Coating Systems for Offshore Wind Power Constructions after Three Years Under Offshore Exposure, Int. J. Adhes. Adhes., 2016, 65, p 96–101.

    Article  CAS  Google Scholar 

  48. M.J. Gimeno, S. Chamorro, R. March, E. Oró, P. Pérez, J. Gracenea, and J. Suay, Anticorrosive Properties Enhancement by Means of Phosphate Pigments in an Epoxy 2k Coating. Assessment by NSS and ACET, Prog. Org. Coat., 2014, 77(12), p 2024–2030.

    Article  CAS  Google Scholar 

  49. M.J. Gimeno, M. Puig, S. Chamorro, J. Molina, R. March, E. Oró, P. Pérez, J.J. Gracenea, and J.J. Suay, Improvement of the Anticorrosive Properties of an Alkyd Coating with Zinc Phosphate Pigments Assessed by NSS and ACET, Prog. Org. Coat., 2016, 95, p 46–53.

    Article  CAS  Google Scholar 

  50. S.J. García and J. Suay, Anticorrosive Properties of an Epoxy-Meldrum Acid Cured System Catalyzed by Erbium III Trifluromethanesulfonate, Prog. Org. Coat., 2006, 57(4), p 319–331.

    Article  Google Scholar 

  51. M. Puig, L. Cabedo, J.J. Gracenea, and J.J. Suay, The Combined Role of Inhibitive Pigment and Organo-Modified Silica Particles on Powder Coatings: Mechanical and Electrochemical Investigation, Prog. Org. Coat., 2015, 80, p 11–19.

    Article  CAS  Google Scholar 

  52. C.H. Hsu and F. Mansfeld, Technical Note: Concerning the Conversion of the Constant Phase Element Parameter Y0 into a Capacitance, Corrosion, 2001, 57, p 747–748.

    Article  CAS  Google Scholar 

  53. J. Molina, M. Puig, M.J. Gimeno, R. Izquierdo, J.J. Gracenea, and J.J. Suay, Influence of Zinc Molybdenum Phosphate Pigment on Coatings Performance Studied by Electrochemical Methods, Prog. Org. Coat., 2016, 97, p 244–253.

    Article  CAS  Google Scholar 

  54. M. Poelman, I. Recloux, N. Cornil, N. Blandin, L. Deronne, Y. LeDisert, and M.G. Olivier, Electrochemical Study of the Corrosion Behaviour at the Edges of Electrocoated Steel, Prog. Org. Coat., 2012, 74(3), p 453–460.

    Article  CAS  Google Scholar 

  55. S. Rossi, M. Simeoni, and A. Quaranta, Behavior of Chromogenic Pigments and Influence of Binder in Organic Smart Coatings, Dyes Pigment., 2021, 184, p 108879.

    Article  CAS  Google Scholar 

  56. Y. Zhou, X. Liu, J. Kang, W. Yue, W. Qin, G. Ma, Z. Fu, L. Zhu, D. She, H. Wang, J. Liang, W. Weng, and C. Wang, Corrosion behavior of HVOF Sprayed WC-10Co4Cr Coatings in the Simulated Seawater Drilling Fluid Under the High Pressure, Eng. Failure Anal., 2020, 109, p 104338.

    Article  CAS  Google Scholar 

  57. Q.J. Zhu, B.B. Zhang, M. Zheng, X. Zhao, and J.W. Xu, Corrosion Behaviors of S355 Steel under Simulated Tropical Marine Atmosphere Conditions, J. Mater. Eng. Perform., 2022, 31, p 10054–10062.

    Article  CAS  Google Scholar 

  58. C. Thinaharan, R.P. George, and J. Philip, In Situ Raman Spectroscopic Analysis on Carbon Steel, Immersed in Aqueous Solutions at Different pH and Anions, J. Mater. Eng. Perform., 2020, 29, p 2792–2805.

    Article  CAS  Google Scholar 

  59. S. Yan and Q.S. Wu, A Novel Structure for Enhancing the Sensitivity of Gas Sensors-A-Fe2O3 Nanoropes Containing a Large Amount of Grain Boundaries and their Excellent Ethanol Sensing Performance, J. Mater. Chem. A, 2015, 3, p 5982–5990.

    Article  CAS  Google Scholar 

  60. F. Vidal, R. Vicente, A.C. Bastos, A.M.F. Rocha, J.M. Silva, and J. Mendes Silva, Atmospheric Corrosion in Two Different Urban Environments in Portugal: Results of One-Year Exposure, Corros. Eng. Sci. Technol., 2019, 54(7), p 614–626.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support by the National Key Research and Development Program of China (Grant No. 2017YFB0702100), Science and Technology Planning Project of Fujian Province (2018H6017) and the National Natural Science Foundation of China (key project Grant No.51731008 and general project Grant No.51671163).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Ling Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Song, GL. & Zheng, D. The Combined Effect of Direct Current Polarization, Ultraviolet Radiation, and Saline Immersion on the Degradation of an Epoxy Coating. J. of Materi Eng and Perform 33, 3570–3581 (2024). https://doi.org/10.1007/s11665-023-08241-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08241-5

Keywords

Navigation