Skip to main content
Log in

Mechanical and Photocatalytic Properties of Cement Composites Containing Metal and Oxide Nanoparticles

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this communication, we report cement composites containing Fe2O3 (iron oxide), TiO2 (titanium dioxide), SiO2 (silicon dioxide) and Cu (copper) nanoparticles added to ordinary portland cement (OPC) in various wt.%. Compressive strength measurements on the OPC-Fe2O3, OPC-TiO2, OPC-SiO2 and OPC-Cu samples are carried out systematically at the standard curing ages of 3, 7, 14 and 28 days, which show significant improvement in the mechanical strength at the optimum dose (wt.%) of nanoparticles. Highest increase in the compressive strength (33%) and flexural strength (20%) is seen for OPC-Fe2O3 (3 wt.% Fe2O3) at a curing age of 28 days. Studies on the OPC-TiO2, OPC-SiO2 and OPC-Cu composites show improvement in mechanical strength compared to that of reference OPC. Increase in mechanical strength is a result of faster and better cement hydration product (C-S-H gel) caused by the availability of higher active surface area of added nanoparticles. X-ray diffraction studies show the presence of C-S-H gel phase in the oxide-cement composites. Thermal treatment on OPC-Fe2O3 composites shows drastic degradation of compressive strength beyond 100 °C due to microcrack formation. Based on the compressive strength with optimum dose, we have carried out smart photocatalytic dye degradation (rhodamine-6G) studies on all the composites. OPC composites ground powder re-dispersed in de-ionized water and ultrasonicated before ultraviolet-visible dye degradation studies. The studies show faster dye degradation for all the composites compared to reference OPC. Highest degradation rate (~ 2.5 time) is obtained with OPC-Fe2O3 composite. Our studies show that these multifunctional oxide-cement composites can be used for dye degradation producing cleaner environment without loss of mechanical strength prerequisite for building application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Du, H. Jing, Y. Gao, H. Su, and H. Fang, Carbon Nanomaterials Enhanced Cement-based Composites: Advances and Challenges, Nanotechnol. Rev., 2020, 9, p 115–135.

    Article  CAS  Google Scholar 

  2. N. Sharma and P. Sharma, Effect of Hydrophobic Agent in Cement and Concrete: A Review, IOP Conf. Ser. Mater. Sci. Eng., 2021, 1116, p 012175.

    Article  CAS  Google Scholar 

  3. L. Qiu, S. Dong, A. Ashour, and B. Han, Antimicrobial Concrete for Smart and Durable Infrastructures: A Review, Constr. Build. Mater., 2020, 260, p 120456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. F. Hamidi and F. Aslani, TiO2-based Photocatalytic Cementitious Composites: Materials, Properties, Influential Parameters, and Assessment Techniques, Nanomaterials, 2019, 9, p 1444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Z. Li, S. Ding, X. Yu, B. Han, and J. Ou, Multifunctional Cementitious Composites Modified with Nano-Titanium Dioxide: A Review, Compos. Part A Appl. Sci. Manuf., 2018, 11, p 11–137.

    Google Scholar 

  6. C. Liu, X. Huang, Y.Y. Wu, X. Deng, J. Liu, Z. Zheng, and D. Hui, Review on the Research Progress of Cement-Based & Geo-Polymer Materials Modified by Graphene & Graphene Oxide, Nanotechnol. Rev., 2020, 9, p 155–169.

    Article  CAS  Google Scholar 

  7. C.V. Dinh, Anticorrosion Behavior of the SiO2/Epoxy Nanocomposite-Concrete Lining System under H2SO4 Acid Aqueous Environment, ACS Omega, 2020, 5, p 10533–10542.

    Article  PubMed  PubMed Central  Google Scholar 

  8. C.-H. Chen, R. Huang, and J.-K. Wu, Preparation and Properties of Polymer Impregnated Concrete, J. Chin. Inst. Eng., 2007, 30, p 163–168.

    Article  CAS  Google Scholar 

  9. P. Sikora, A. Augustyniak, K. Cendrowski, P. Nawrotek, and E. Mijowska, Antimicrobial Activity of Al2O3, CuO, Fe3O4, and ZnO Nanoparticles in Scope of their Further Application in Cement-based Building Materials, Nanomaterials, 2018, 8, p 212.

    Article  PubMed  PubMed Central  Google Scholar 

  10. D.S. Ng et al., Influence of SiO2, TiO2 and Fe2O3 Nanoparticles on the Properties of fly Ash Blended Cement Mortars, Constr. Build. Mater., 2020, 258, p 119627.

    Article  Google Scholar 

  11. Z.H. Abdulabbas, A.T. Jasim, and M.A. Salih, Assessment the Influence of Fe2O3 Micro and Nanoparticles on Properties of Concrete, Key Eng. Mater., 2020, 870, p 29–37.

    Article  Google Scholar 

  12. M.V. Kiamahalleh, A. Alishah, F. Yousefi, S.H. Astani, and A. Gholampour, Iron Oxide Nanoparticle Incorporated Cement Mortar Composite: Correlation Between Physico-Chemical & Physico-Mechanical Properties, Mater. Adv., 2020, 1, p 1835–1840.

    Article  Google Scholar 

  13. R. Zhang, X. Cheng, P. Hou, and Z. Ye, Influences of Nano-TiO2 on the Properties of Cement-Based Materials: Hydration and Drying Shrinkage, Constr. Build. Mater., 2015, 81, p 35–41.

    Article  Google Scholar 

  14. S. Lv, Y. Ma, C. Qiu, T. Sun, J. Liu, and Q. Zhou, Effect of Graphene Oxide Nano-Sheets of Microstructure & Mechanical Properties of Cement Composites, Constr. Build. Mater., 2013, 49, p 121–127.

    Article  CAS  Google Scholar 

  15. N. Wang, S. Wang, L. Tang, L. Ye, B. Cullbrand, A. Zehri, B.E. Tebikachew, and J. Liu, Improved Interfacial Bonding Strength and Reliability of Functionalized Graphene Oxide for Cement Reinforcement Application, Chem. Eur. J., 2020, 26, p 6561–6568.

    Article  CAS  PubMed  Google Scholar 

  16. A. Slosarczyk, A. Kwiecinska, and E. Pelszyk, Influence of Selected Metal Oxides in Micro and Nanoscale on the Mechanical and Physical Properties of the Cement Mortars, Procedia Eng., 2017, 172, p 1031–1038.

    Article  CAS  Google Scholar 

  17. S. Khannyra, M.J. Mosquera, M. Addou, and M.L.A. Gil, Cu-TiO2/SiO2 Photocatalysts for Concrete-Based Building Materials: Self-Cleaning and air De-pollution Performance, Constr. Build. Mater., 2021, 313, p 125419.

    Article  CAS  Google Scholar 

  18. B. Han, Z. Li, L. Zhang, S. Zeng, X. Yu, B. Han, and J. Ou, Reactive Powder Concrete Reinforced with Nano SiO2-coated TiO2, Const. Build. Mater, 2017, 148, p 104–112.

    Article  CAS  Google Scholar 

  19. Z.S. Metaxa, M.S. K-Gdoutos, S.P. Shah, Mechanical Properties & Nanostructure of Cement-Based Materials Reinforced with Carbon Nanofibers & Polyvinyl Alcohol (PVA) Microfibers, American Concrete Institute, ACI Special Publication, EDITION-270 SP, 2010, 115–126

  20. C. Pei, J.-H. Zhu, and F. Xing, Photocatalytic Property of Cement Mortars Coated with Graphene/TiO2 Nanocomposites Synthesized via sol Gel Assisted Electrospray Method, J. Clean. Prod., 2021, 279, p 123590.

    Article  CAS  Google Scholar 

  21. Z. Guo, C. Huang, and Y. Chen, Experimental Study on Photocatalytic Degradation Eflciency of Mixed Crystal Nano-TiO2 Concrete, Nanotechnol. Rev., 2020, 9, p 219–229.

    Article  CAS  Google Scholar 

  22. W. Zhong, D. Wang, C. Jiang, X. Lu, L. Zhang, and X. Cheng, Study on Visible Light Catalysis of Graphite Carbon Nitride-Silica Composite Material and Its Surface Treatment of Cement, Crystals, 2020, 10, p 490.

    Article  CAS  Google Scholar 

  23. S.S. Lucas, V.M. Ferreira, and J.L. Barroso de Aguiar, Incorporation of Titanium Dioxide Nanoparticles in Mortars-Influence of Microstructure in the Hardened State Properties and Photocatalytic Activity, Cem. Concr. Res., 2013, 43, p 112–120.

    Article  CAS  Google Scholar 

  24. E. Cerro-Prada, S. Garcia-Salgado, M.A. Quijano, and F. Varela, Controlled Synthesis and Microstructural Properties of Sol-Gel TiO2 Nanoparticles for Photocatalytic Cement Composites, Nanomaterials, 2019, 9, p 26.

    Article  Google Scholar 

  25. Z. Geng, M. Xin, X. Zhu, H. Xu, X. Cheng, and D. Wang, A New Method for Preparing Photocatalytic Cement-Based Materials and the Investigation on Properties and Mechanism, J. Build. Eng., 2021, 35, p 102080.

    Article  Google Scholar 

  26. P. Sikora, K. Cendrowski, A. Markowska-Szczupak, E. Horszczaruk, and E. Mijowsk, The Effects of Silica/Titania Nanocomposite on the Mechanical and Bactericidal Properties of Cement Mortars, Constr. Build. Mater., 2017, 150, p 738–746.

    Article  CAS  Google Scholar 

  27. A.D. Mori, E.D. Gregorio, A.P. Kao, G. Tozzi, E. Barbu, A. Sanghani-Kerai, R.R. Draheim, and M. Roldo, Antibacterial PMMA Composite Cements with Tunable Thermal and Mechanical Properties, ACS Omega, 2019, 4, p 19664–19675.

    Article  PubMed  PubMed Central  Google Scholar 

  28. I. Klapiszewska, A. Parus, Ł Ławniczak, T. Jesionowski, Ł Klapiszewski, and A. Slosarczyk, ‘Production of Antibacterial Cement Composites Containing ZnO/lignin and ZnO–SiO2/lignin Hybrid Admixtures, Cement Concr. Compos., 2021, 124, p 104250.

    Article  CAS  Google Scholar 

  29. J. Borucka-Lipska, P. Brzozowski, J. Błyszko, R. Bednarek, and E. Horszczaruk, Effects of Elevated Temperatures on the Properties of Cement Mortars with the Iron Oxides Concentrate, Materials, 2021, 14, p 148.

    Article  CAS  Google Scholar 

  30. H.H. Pan, C.-K. Wang, M. Tia, and Y.-M. Su, Influence of Water-to-Cement Ratio on Piezoelectric Properties of Cement-Based Composites Containing PZT Particles, Constr. Build. Mater., 2020, 239, p 117858.

    Article  CAS  Google Scholar 

  31. A. Yousefi, W. Tang, M. Khavarian, C. Fang, and S. Wang, Thermal and Mechanical Properties of Cement Mortar Composite Containing Recycled Expanded Glass Aggregate and Nano Titanium Dioxide, Appl. Sci., 2020, 10, p 2246.

    Article  CAS  Google Scholar 

  32. J.A. Santos, A.O. Sanches, J.L. Akasaki, M.M. Tashima, E. Longo, and J.A. Malmonge, Influence of PZT Insertion on Portland Cement Curing Process and Piezoelectric Properties of 0–3 Cement-Based Composites by Impedance Spectroscopy, Constr. Build. Mater., 2020, 238, p 117675.

    Article  CAS  Google Scholar 

  33. A. Hakamy, Influence of SiO2 Nanoparticles on the Microstructure, Mechanical Properties, and Thermal Stability of Portland Cement Nanocomposites, J. Taibah Univ. Sci., 2021, 15, p 909.

    Article  Google Scholar 

  34. N. Dang, J. Tao, Q. Zeng, and W. Zhao, May the Piezoresistivity of GNP-Modified Cement Mortar Be Related to Its Fractal Structure?, Fractal. Fract., 2021, 5, p 148.

    Article  Google Scholar 

  35. M. Janus, S. Madraszewski, K. Zajac, and E. Kusiak-Nejman, A New Preparation Method of Cement with Photocatalytic Activity, Materials, 2020, 13, p 5540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. S. Sharma, D. Kumar, S. Kumar, M.S. Goyat, and P. Mandal, Structural and Optical Properties of Cu Incorporated ZnFe2O4 Ferrite Nanoparticles Prepared by Wet Chemical Route, Mater. Chem. Phys., 2018, 212, p 292–297.

    Article  CAS  Google Scholar 

  37. A. Lassoued, B. Dkhil, A. Gadri, and S. Ammar, Control of the Shape and Size of Iron Oxide (α-Fe2O3) Nanoparticles Synthesized through the Chemical Precipitation Method, Results Phys., 2017, 7, p 3007–3015.

    Article  Google Scholar 

  38. I. Kourti, D. Deegan, A.R. Boccaccini, and C.R. Cheeseman, Use of DC Plasma Treated Air Pollution Control (APC) Residue Glass as Pozzolanic Additive in Portland Cement, Waste Biomass Valorization, 2013, 4, p 719–728.

    Article  CAS  Google Scholar 

  39. B.J. Madhu, H. Bhagyalakshmi, B. Shruthi, and M. Veerabhadraswamy, Structural, AC Conductivity, Dielectric and Catalytic Behavior of Calcium Oxide Nanoparticles Derived from Waste Eggshells, S N Appl. Sci., 2021, 3, p 637.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors acknowledge research facilities (x-ray diffraction and UV-Vis) at Central instrumentation Centre (CIC) of UPES. Authors also acknowledge assistance from Ram Sagar in preparing samples and compressibility data acquisition.

Author information

Authors and Affiliations

Authors

Contributions

ANS prepared samples, carried out the experiments, analyzed data and wrote the manuscript. PM supervised the work, analyzed the data, wrote and edited the manuscript.

Corresponding author

Correspondence to P. Mandal.

Ethics declarations

Conflict of interest

Authors declare no known competing interests that have affected the work presented here in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shankar, A.N., Mandal, P. Mechanical and Photocatalytic Properties of Cement Composites Containing Metal and Oxide Nanoparticles. J. of Materi Eng and Perform 33, 3559–3569 (2024). https://doi.org/10.1007/s11665-023-08237-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08237-1

Keywords

Navigation