Skip to main content
Log in

Investigation of TiO2/SiC Coating on Graphite Electrodes for Electrical Arc Furnaces

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Nowadays the consumption of graphite electrodes is the major portion of steel production costs in and electric arc furnace (EAF). The correct coating of electrodes can decrease the consumption of electrodes, in this study as its novelty. The validity of SiC/TiO2 productive coating is evaluated to decrease the corrosion of electrodes by using the numerical simulation, experimental method and industrial testing in the EAF. All the tests and experiments performed in this study were to obtain a more precise consideration of the corrosion of electrodes. Moreover, after the thermogravimetric analysis, experimental and industrial investigations, the obtained results showed that this coating has a prominent role in decreasing the corrosion of electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  1. J. Sing, A.K. Sing, and A.K. Jain, Fabrication of Novel Coated Graphite Electrodes for the Selective Nano-Level Determination of Cd2+ Ions in Biological and Environmental Samples, Electrochim. Acta, 2011, 56, p 9095–9104.

    Article  Google Scholar 

  2. B. Haghighi, H. Hamidi, and L. Gorton, Electrochemical Behavior and Application of Prussian Blue Nanoparticle Modified Graphite Electrode, Sens. Actuators B Chem., 2010, 147, p 270–276.

    Article  CAS  Google Scholar 

  3. S.G. Al-Shawi, N. Andreevna Alekhina, S. Aravindhan, L. Thangavelu, A. Elena, N. Viktorovna Kartamysheva, and R. Rafkatovna Zakieva, Synthesis of NiO Nanoparticles and Sulfur, and Nitrogen Co Doped-Graphene Quantum Dots/Nio Nanocomposites for ANTIBACTERIAL APplication, J. Nanostruct., 2021, 11(1), p 181–188.

    CAS  Google Scholar 

  4. B. Akhoundi, M. Nabipour, F. Hajami, S.S. Band, and A. Mosavi, Calculating filament feed in the fused deposition modeling process to correctly print continuous fiber composites in curved paths, Materials, 2020, 13(20), p 4480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. L. Han, Lu. Chenji, A. Yumashev, D. Bahrami, R. Kalbasi, M. Jahangiri, A. Karimipour, S.S. Band, K.-W. Chau, and A. Mosavi, Numerical Investigation of Magnetic Field on Forced Convection Heat Transfer and entropy Generation in a Microchannel with Trapezoidal Ribs, Eng. Appl. Comput. Fluid Mech., 2021, 15(1), p 1746–1760.

    Google Scholar 

  6. G. Yin, F.J.I. Alazzawi, D. Bokov, H.A. Marhoon, A.S. El-Shafay, M.L. Rahman, and H.C. Nguyen, Multiple Machine Learning Models for Prediction of CO2 Solubility in Potassium and Sodium Based Amino Acid Salt Solutions, Arab. J. Chem., 2022, 15(3), p 103608.

    Article  CAS  Google Scholar 

  7. V. Bakhtadze, V. Mosidze, T. Machaladze, N. Kharabadze, D. Lochoshvili, M. Pajishvili, and N. Mdivani, Activity of Pd-MnOx/Cordierite (Mg, Fe) 2Al4Si5O18) Catalyst for Carbon Monoxide Oxidation, Eur. Chem. Bull., 2020, 9(2), p 75–77.

    Article  CAS  Google Scholar 

  8. S. Dmytro, The Study of Welding Requirements During Construction and Installation of Seismic-Resistant Steel Structures, J. Res. Sci. Eng. Technol., 2020, 8(2), p 17–20.

    Article  Google Scholar 

  9. M. Salimi, V. Pirouzfar, and E. Kianfar, Enhanced Gas Transport Properties in Silica Nanoparticle Filler-Polystyrene Nanocomposite Membranes, Colloid Polym. Sci., 2017, 295, p 215–226.

    Article  CAS  Google Scholar 

  10. H. Watandost, J. Achak, and A. Haqmal, Oxidation of Hydrogels Based of Sodium Alginate and MnO2 as Catalyst, Int. J. Innov. Res. Sci. Stud., 2021, 4(4), p 191–199.

    Google Scholar 

  11. A. Kannan, S. Anitha Roy, S.R. Rajeshkumar, and T. Lakshmi, Anticancer Activity of Zinc Oxide Nanoparticles Synthesised Using Nutmeg Oleoresin, J Complement Med Res, 2021, 12(3), p 119–124.

    Article  CAS  Google Scholar 

  12. H.A. Moghadam, M. Jabbari, S. Daneshmand, S. RasouliJazi, and A. Khosravi, Investigation of the TiO2/SiC/SiO2 Coating Effect on the Wear Rate of Needle Graphite Electrode by Using Electrical Discharge Machining, ADMT, 2021, 14(2), p 65–71.

    Google Scholar 

  13. S. Alwan, M. Al-Saeed, and H. Abid, Safety Assessment and Biochemical Evaluation of Biogenic Silver Nanoparticles (Using Bark Extract of C. Zeylanicum) in Rattus Norvegicus Rats: Safety of Biofabricated AgNPs (Using Cinnamomum Zeylanicum Extract), Baghdad J. Biochem. Appl. Biol. Sci., 2021, 2(03), p 138–150.

    Article  Google Scholar 

  14. M. Osanloo, S.M. Amini, M.M. Sedaghat, and A. Amani, Larvicidal Activity of Chemically Synthesized Silver Nanoparticles Against Anopheles stephensi, J. Pharm. Negat. Res., 2019, 10(1), p 69–72.

    CAS  Google Scholar 

  15. FZh. Qiang, Oxidation Behaviors of SiO/SiC Coated Matrix Graphite of High Temperature Gas-Cooled Reactor Fuel Element, Nucl. Eng. Des., 2013, 265, p 867–887.

    Article  Google Scholar 

  16. S.O. Mirabootalebi, G.H. Akbari Fakhrabadi, and R. Mirahmadi Babaheydari, High-yield Production of Amorphous Carbon via Ball Milling of Graphite and Prediction of Its Crystallite Size through ANN, J. Appl. Organomet. Chem, 2021, 1(2), p 76–85.

    Google Scholar 

  17. W. Abdussalam-Mohammed, Comparison of Chemical and Biological Properties of Metal Nanoparticles (Au, Ag), with Metal Oxide Nanoparticles (ZnO-NPs) and their Applications, Adv. J. Chem. A., 2020, 3(2), p 192–210.

    Article  CAS  Google Scholar 

  18. A. Dehno Khalaji, Cobalt Oxide Nanoparticles by Solid-State Thermal Decomposition, Synthesis and Characterization, Eurasian Chem. Commun, 2019, 1(1), p 75–8.

    Google Scholar 

  19. A. Talavari, B. Ghanavati, A. Azimi, and S. Sayyahi, PVDF/MWCNT Hollow Fiber Mixed Matrix Membranes for Gas Absorption by Al2O3 Nano Fluid, Progr. Chem. Biochem. Res., 2021, 4(2), p 177–190.

    CAS  Google Scholar 

  20. Z. Wang, Y. Fu, N. Wang, and L. Feng, 3D numerical simulation of electrical arc furnaces forthe MgO production, J. Mater. Process. Technol., 2014, 214, p 2284–2291.

    Article  CAS  Google Scholar 

  21. H.J. Odenthal, A. Kemminger, F. Krause, L. Sankowski, N. Uebber, and N. Vogl, Review on Modeling and Simulation of the Electric Arc Furnace (EAF), Steel Res. Int., 2018, 89(1), p 1–7.

    Article  Google Scholar 

  22. T. Keplingera, M. Haider, T. Steinparzer, A. Patrejko, P. Trunner, and M. Haselgrübler, Dynamic Simulation of an Electric Arc Furnace Waste Heat Recovery System for Steam Production, Appl. Therm. Eng., 2018, 135, p 188–196.

    Article  Google Scholar 

  23. D.C. Bhonsle and R.B. Kelkar, Analyzing Power Quality Issues in Electric Arc Furnace by Modeling, Energy, 2016, 115, p 830–839.

    Article  Google Scholar 

  24. A. Tomasovic Teklic, B. Filipovic-Grcic, and I. Pavic, Modelling of Three-Phase Electric Arc Furnace for Estimation of Voltageflicker in Power Transmission Network, Electr. Power Syst. Res, 2017, 146, p 218–227.

    Article  Google Scholar 

  25. O. Kazak, Numerical Modelling of Electro Vortex, and Heat Flows in dc Electric Arc Furnace with Cooling Bottom Electrode, Heat Mass Transf., 2013, 50, p 685–692.

    Article  Google Scholar 

  26. E. Khodabandeh, M. Ghaderi, A. Afzalabadi, A. Rouboa, and A. Salarifard, Parametric Study of Heat Transfer in an Electric Arc Furnace and Cooling System, Appl. Therm. Eng., 2017, 123, p 1190–1200.

    Article  Google Scholar 

  27. ANSYS, Inc, FLUENT, Version 14.0, ANSYS, Inc, Canonsburg, PA, 2013.

  28. K.T. Karalis, N. Karkalos, N. Cheimarios, G.S.E. Antipas, A. Xenidis, and A.G. Boudouvis, A CFD Analysis of Slag Properties, Electrode Shape and Immersion Depth Effects on Electric Submerged Arc Furnace Heating in ferronickel processing, Appl. Math. Model., 2016, 40, p 9052–9066.

    Article  Google Scholar 

  29. D. Guo, G. Irons, Modeling of radiation intensity an EAF, in: Third International Conference on CFD in the Minerals and Process Industries, (Melbourne, Australia, 2003), pp 10–12.

  30. Y. Li and R. Fruehan, Computational Fluid Dynamics Simulation of Post Combustion in the Electric Arc Furnace, Metall. Mater. Trans. A., 2003, 34(3), p 333–343.

    Article  Google Scholar 

  31. S. Jitendra, K.S. Ashok, and A.K. Jain, Fabrication of Novel Coated Graphite Electrodes for the Selective Nano-Level Determination of Cd2+ Ions in Biological and Environmental Samples, Electrochim. Acta, 2011, 56(25), p 9095–9104.

    Article  Google Scholar 

  32. Y. Kong, J. Yuan, Z.L. Wang, S.P. Yao, and Z.D. Chen, Application of Expanded Graphite/Attapulgite Composite Materials as Electrode for Treatment of Textile Waste Water, Appl. Clay Sci., 2009, 46(4), p 358–362.

    Article  CAS  Google Scholar 

  33. H. Behzad, H. Hassan, and G. Lo, Electrochemical Behavior and Application of Prussian Blue Nanoparticle Modified Graphite Electrode, Sens. Actuators, B Chem., 2010, 147(1), p 270–276.

    Article  Google Scholar 

  34. S. Zhang and W.E. Lee, Improving the Water-Wet ability and Oxidation Resistance of Graphite Using Al2O3/SiO2 Sol–Gel Coatings, J. Eur. Ceram. Soc., 2003, 23(8), p 1215–1221.

    Article  CAS  Google Scholar 

  35. A. Nechepurenko and S. Samuni, Oxidation Protection of Graphite by BN Coatings, J. Solid State Chem., 2000, 154(1), p 162–164.

    Article  CAS  Google Scholar 

  36. Z. Zurecki, E.A. Hayduk Jr., Blandon, G. North, R.B. Swan, D.L. Mitchell, Jr. Coopersburg; Method of Forming Titanium Nitride Coating on Carbon Graphite Substrates By Electric ARC Thermal Spray Process Using Titanium Feed Wire And Nitrogen as the Atomizing Gas, 1993, U.S Patent No. 5254359.

  37. Z.Q. Fu, C.B. Wang, C.H. Tang, H.S. Zhao and J.C. Robin, Oxidation behaviors Of SiO2/SiC Coated Matrix Graphite of High Temperature Gas-Cooled Reactor Fuel Element, Nucl. Eng. Des., 2013, 265, p 867–871.

    Article  CAS  Google Scholar 

  38. W. Wang and A.L. Fan, Investigation on Property of Oxidation Resistance of Al2O3 Coating for Common Graphite, Carbon, 2009, 138, p 23–25.

    Google Scholar 

  39. N. Bahlawane, A High-Temperature Oxidation-Resistant Coating, for Graphite, Prepared by Atmospheric Pressure Chemical Vapor Deposition, Thin Solid Films, 2001, 394(1–2), p 298–303.

    CAS  Google Scholar 

  40. K. Neufuss et al. Protective Layer for Carbonaceous Materials and Method of Applying the Same, 1988, U.S Patent No. 4772514.

  41. K. Xia, C. Lu and Y. Yang, Preparation of Anti-Oxidative SiC/SiO2 Coating on Carbon Fibers from Vinyltriethoxysilane by Sol–Gel Method, Appl. Surf. Sci., 2013, 265, p 603–609.

    Article  CAS  Google Scholar 

  42. D.A.H. Hanaor and Ch.C. Sorrell, OPINION ON 23 Titanium Dioxide (Nano Form): Review of the Anatase to Rutile Phase Transformation, J. Mater. Sci., 2011, 46, p 855–874.

    Article  CAS  Google Scholar 

  43. L. Chen, L. Yang, Z. Liu, D. Huang and A. Qiu, Erosion and Surface Morphology of the Graphite Electrodes in High-Current, High-Coulo Transfer Gas Switch, IEEE Trans. Plasma Sci., 2018, 46(10), p 3320–3324.

    Article  CAS  Google Scholar 

  44. G. Routschka, Pocket Manual Refractory Materials, 2nd ed. Vulkan-Verlag GmbH, 2007.

    Google Scholar 

  45. H. Alian Moghadam, M. Jabbari, S. Daneshmand, S. Rasouli Jazi and A. Khosravi, Effects of TiO2/SiC/SiO2 Coating on Graphite Electrode Consumption in Sublimation and Oxidation States as Determined by EAF Simulation and Experimental Methods, Sur. Coat. Technol., 2021, 420, p 127340.

    Article  CAS  Google Scholar 

  46. G.S.E. Antipas, L. Temleitner, K. Karalis, S. Kohara, L. Pusztai and A. Xenidis, A Container Less Study of Short-Range Order in High-Temperature Fe-Si-Al-Ca-Mg-Cr-Cu-Ni Oxide Systems, J. Mol. Struct., 2012, 1019, p 151–158.

    Article  CAS  Google Scholar 

  47. F. Zhiqiang, T. Liang, J.C. Robin and T. Chunhe, The Stability of SiC Coating and SiO2/SiC Multilayer on the Surface of Graphite for HTGRs at Normal Service Condition, Appl. Surf. Sci., 2005, 2040(1–4), p 349–354.

    Article  Google Scholar 

  48. H. Alian Moghadam, M. Jabbari, S. Daneshmand, S. Rasouli Jazi and A. Khosravi, fabrication Of Protective SiC/TiO2/SiO2 Coating for Graphite Electrodes, Surf. Rev. Lett., 2021, 28(5), p 2150038.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the R&D of the Mobarakeh Steel Company and Islamic Azad University Majlesi branch for the provision of research facilities used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Daneshmand.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the author(s).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daneshmand, S., Vini, M.H. Investigation of TiO2/SiC Coating on Graphite Electrodes for Electrical Arc Furnaces. J. of Materi Eng and Perform 33, 3188–3206 (2024). https://doi.org/10.1007/s11665-023-08230-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08230-8

Keywords

Navigation