Skip to main content
Log in

Effect of TiC and Magnetic Field on Microstructure and Mechanical Properties of IN738 Superalloy Processed by Selective Laser Melting

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Modifying the microstructure of the IN738 superalloy increases the working efficiency of gas turbine blades. In this study, the microstructure of IN738 superalloy processed by selective laser melting was improved by applying a magnetic field and adding TiC nanoparticles. The results show that the application of a magnetic field by crushing the solidifying grains and the addition of TiC by creating places for the heterogeneous nucleation of the melt causes a remarkable expansion of the equiaxed grains. However, the simultaneous application of a magnetic field and TiC nanoparticles significantly reduces the grain size, grain aspect, and, consequently, the crack density and porosity. Also, the results showed that with the reduction of grain ratio, high-angle grain boundary and grain boundary length density increase dramatically, which results in a decrease in the concentration of elements and phases sensitive to cracking in grain boundaries. The increase in the volume fraction and the reduction in the γ' size were other effects of adding TiC and the external field, which significantly improved the creep and wear behavior. So, with the expansion of the equiaxed region, the hardness increased, and the wear resistance increased through the delay in the transition from the elastic area to the plastic area during the wear test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A.M. Kolagar, N. Tabrizi, M. Cheraghzadeh and M.S. Shahriari, Failure Analysis of Gas Turbine First Stage Blade made of Nickel-Based Superalloy, Case Stud. Eng. Fail. Anal., 2017, 8, p 61–68.

    Article  Google Scholar 

  2. R. Mohammad, A.A. Sani, M.T. Noghani, M.S. Yazdi, M. Taheri, A. Moghanian, M.A. Mohammadi, M. Moradi, A.M.M. García and H. Besharatloo, Effect of Lateral Laser-Cladding Process on the Corrosion Performance of Inconel 625, Metals, 2023, 13(2), p 367.

    Article  Google Scholar 

  3. M. Taheri, M. Razavi, S.F. Kashani-Bozorg and M.J. Torkamany, Relationship Between Solidification and Liquation Cracks in the Joining of GTD-111 Nickel-Based Superalloy by Nd: YAG Pulsed-Laser Welding, J. Market. Res., 2021, 15, p 5635–5649.

    CAS  Google Scholar 

  4. M. Taheri, A.S. Golezani, & K. Shirvani (2012). Effect of aluminide coating on rapture behavior of Ni-based superalloy GTD-111 in high temperature. In: Advanced materials research (Vol. 457, pp. 330–333). Trans Tech Publications Ltd.

  5. M. Ebrahimniya, F. Malek Ghayeni and H. Shahverdi, Microstructural Investigation of Laser Remelted Electrospark Deposited Layer on IN738LC Super Alloy, Metall. Eng., 2014, 17(54), p 3–9.

    Google Scholar 

  6. M. Taheri and S.F. Kashani-Bozorg, Creep Behaviors Evaluation of IN738 Superalloy Welded by Pulsed Nd: YAG Laser Through the Small Punch Creep Test, Metallogr. Microstruct. Analy., 2021, 10(2), p 199–207.

    Article  CAS  Google Scholar 

  7. H.A. Colorado, E.I.G. Velásquez and S.N. Monteiro, Sustainability of Additive Manufacturing: the Circular Economy of Materials and Environmental Perspectives, J. Market. Res., 2020, 9(4), p 8221–8234.

    Google Scholar 

  8. C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh and S.L. Sing, Review of Selective Laser Melting: Materials and Applications, Appl. Phys. Rev., 2015, 2(4), p 041101.

    Article  Google Scholar 

  9. M. Taheri, The Fracture Behaviors of the Selective Laser Melting Processed IN738 Superalloy by In-situ Tensile SEM, Res. Opt., 2021, 5, p 100200.

    Article  Google Scholar 

  10. Q. Han and Y. Jiao, Effect of Heat Treatment and Laser Surface Remelting on AlSi10Mg Alloy Fabricated by Selective Laser Melting, Int. J. of Adv. Manuf. Technol., 2019, 102(9), p 3315–3324.

    Article  Google Scholar 

  11. Y. Cao, N. Farouk, M. Taheri, A.V. Yumashev, S.F.K. Bozorg and O.O. Ojo, Evolution of Solidification and Microstructure in Laser-clad IN625 Superalloy Powder on GTD-111 Superalloy, Surf. Coat. Technol., 2021, 412, p 127010.

    Article  CAS  Google Scholar 

  12. W. Wei, J.C. Xiao, C.F. Wang, Q. Cheng, F.J. Guo, Q. He and C.X. Huang, Hierarchical Microstructure and Enhanced Mechanical Properties of SLM-Fabricated GH5188 Co-Superalloy, Mater. Sci. Eng. A, 2022, 831, p 142276.

    Article  CAS  Google Scholar 

  13. X. Wang, L.N. Carter, B. Pang, M.M. Attallah and M.H. Loretto, Microstructure and Yield Strength of SLM-Fabricated CM247LC Ni-Superalloy, Acta Mater., 2017, 128, p 87–95.

    Article  CAS  Google Scholar 

  14. J.U. Lee, Y.K. Kim, S.M. Seo and K.A. Lee, Effects of Hot Isostatic Pressing Treatment on the Microstructure and Tensile Properties of Ni-Based Superalloy CM247LC Manufactured by Selective Laser Melting, Mater. Sci. Eng. A, 2022, 841, p 143083.

    Article  CAS  Google Scholar 

  15. L. Zhai, C. Ban, J. Zhang and X. Yao, Characteristics of Dilution and Microstructure in Laser Cladding Ni-Cr-B-Si Coating Assisted by Electromagnetic Compound Field, Mater. Lett., 2019, 243, p 195–198.

    Article  CAS  Google Scholar 

  16. L. Wang, S.Y. Song, Y. Hu and J.H. Yao, Regulation Research on Microstructure of Laser Cladding Under Electric-Magnetic Synergistic Effect, Chin. J. Lasers, 2015, 42(z1), p 0103005.

    Article  Google Scholar 

  17. Z. Zuo, M. Taheri, M. Razavi, M.J. Torkamany, A. Rasoulpouraghdam and R.V. Vignesh, Effect of Magnetic Field on Tribological Properties of IN718 Superalloy Coating Produced by Laser Cladding on GTD-111 Superalloy, Vacuum, 2022, 203, p 111311.

    Article  CAS  Google Scholar 

  18. M. Taheri and M. Razavi, Effect of TiC on the Microstructure of GTD-111 Superalloy Processed by Laser Powder Bed Fusion, Mater. Lett., 2022, 328, p 133091.

    Article  CAS  Google Scholar 

  19. M. Keneshloo, M. Paidar and M. Taheri, Role of SiC Ceramic Particles on the Physical and Mechanical properties of Al–4% Cu Metal Matrix Composite Fabricated via Mechanical Alloying, J. Compos. Mater., 2017, 51(9), p 1285–1298.

    Article  CAS  Google Scholar 

  20. A. Rajabi, M.J. Ghazali and A.R. Daud, Chemical Composition, Microstructure and Sintering Temperature Modifications on Mechanical Properties of TiC-Based Cermet–A Review, Mater. Des., 2015, 67, p 95–106.

    Article  CAS  Google Scholar 

  21. B. AlMangour, M.S. Baek, D. Grzesiak and K.A. Lee, Strengthening of Stainless Steel by Titanium Carbide Addition and Grain Refinement During Selective Laser Melting, Mater. Sci. Eng. A, 2018, 712, p 812–818.

    Article  CAS  Google Scholar 

  22. Q. Han, Y. Gu, J. Huang, L. Wang, K.W. Low, Q. Feng and R. Setchi, Selective Laser Melting of Hastelloy X Nanocomposite: Effects of TiC Reinforcement on Crack Elimination and Strength Improvement, Compos. Part B Eng., 2020, 202, p 108442.

    Article  CAS  Google Scholar 

  23. D. Gu, Y.C. Hagedorn, W. Meiners, K. Wissenbach and R. Poprawe, Nanocrystalline TiC Reinforced Ti Matrix Bulk-form Nanocomposites by Selective Laser Melting (SLM): Densification, Growth Mechanism and Wear Behavior, Compos. Sci. Technol., 2011, 71(13), p 1612–1620.

    Article  CAS  Google Scholar 

  24. B. AlMangour, D. Grzesiak, J. Cheng and Y. Ertas, Thermal Behavior of the Molten Pool, Microstructural Evolution, and Tribological Performance During Selective Laser Melting of TiC/316L Stainless Steel Nanocomposites: Experimental and Simulation Methods, J. Mater. Process. Technol., 2018, 257, p 288–301.

    Article  CAS  Google Scholar 

  25. A. Behera and A.K. Sahoo, Wear Behaviour of Ni Based Superalloy: A Review, Mater. Today Proc., 2020, 33, p 5638–5642.

    Article  CAS  Google Scholar 

  26. V.H. Mercado, I. Mejía and A. Bedolla-Jacuinde, Effect of Load and Sliding Rate on the Wear Behavior of Ti-Containing TWIP Steel, J. Mater. Eng. Perform., 2017, 26, p 2213–2225.

    Article  CAS  Google Scholar 

  27. T.S. Chowdhury, F.T. Mohsin, M.M. Tonni, M.N.H. Mita and M.M. Ehsan, A Critical Review on Gas Turbine Cooling Performance and Failure Analysis of Turbine Blades, Int. J. Thermofluids, 2023, 18, p 100329.

    Article  CAS  Google Scholar 

  28. H. Ghorbani, H. Farhangi and M. Malekan, Material Characterization of Long-Term Service-Exposed GTD-111 Nickel Based Superalloy, Eng. Fail. Anal., 2023, 148, p 107061.

    Article  CAS  Google Scholar 

  29. CEN/WS, Small Punch Test Method for Metallic Materials Part 1: A Code of Practice for Small Punch Testing at Elevated Temperatures (2005) Report No. CEN/WS 21.

  30. Y. Zhang, L. Wei, H. Zhang, J. Wang, C. Ma and F. Xu, Study on Magnetic-Field-Assisted Electrodeposited Ni-SiC Nanocomposites, J. Mater. Eng. Perform., 2022, 32, p 602–612.

    Article  Google Scholar 

  31. S. Zhao, B. Zhang, S. Mehrez, R.V. Vignesh, M. Taheri and T. Sharifi, Laser Cladding of IN625 Superalloy Assisted by Hybrid Ultrasonic-Electromagnetic Field, Mater. Lett., 2022, 323, p 132592.

    Article  CAS  Google Scholar 

  32. M. Taheri, A. Halvaee and S.F. Kashani-Bozorg, Effect of Nd: YAG Pulsed-Laser Welding Parameters on Microstructure and Mechanical Properties of GTD-111 Superalloy Joint, Mater. Res. Express, 2019, 6(7), p 076549.

    Article  CAS  Google Scholar 

  33. A. Khorram, M. Taheri and M. Fasahat, Laser Cladding of Inconel 713 LC with Stellite 31 Powder: Statistical Modeling and Optimization, Laser Phys., 2021, 31(9), p 096001.

    Article  CAS  Google Scholar 

  34. L. Xinxu, J. Chonglin, Z. Yong, L. Shaomin and J. Zhouhua, Segregation and Homogenization for a New Nickel-Based Superalloy, Vacuum, 2020, 177, p 109379.

    Article  Google Scholar 

  35. T. Tao, D. Zhou, J. Liu and X. Wang, Improvement of Laser Welded Joint Properties of AZ31B Magnesium Alloy to DP590 Dual-Phase Steel Produced by External Magnetic Field, J. Manuf. Process., 2022, 79, p 270–283.

    Article  Google Scholar 

  36. Y. Wang, X. Chen, Q. Shen, C. Su, Y. Zhang, S. Jayalakshmi and R.A. Singh, Effect of Magnetic Field on the Microstructure and Mechanical Properties of Inconel 625 Superalloy Fabricated by Wire Arc Additive Manufacturing, J. Manuf. Process., 2021, 64, p 10–19.

    Article  Google Scholar 

  37. D. Gu and Y. Shen, Effects of Processing Parameters on Consolidation and Microstructure of W-Cu Components by DMLS, J. Alloy. Compd., 2009, 473(1–2), p 107–115.

    Article  CAS  Google Scholar 

  38. L. Liu, T. Huang, Y. Xiong, A. Yang, Z. Zhao, R. Zhang and J. Li, Grain Refinement of Superalloy K4169 by Addition of Refiners: Cast Structure and Refinement Mechanisms, Mater. Sci. Eng. A, 2005, 394(1–2), p 1–8.

    Google Scholar 

  39. L. Wang and N. Wang, Effect of Substrate Orientation on the Formation of Equiaxed Stray Grains in Laser Surface Remelted Single Crystal Superalloys: Experimental Investigation, Acta Mater., 2016, 104, p 250–258.

    Article  CAS  Google Scholar 

  40. M. Taheri, A. Halvaee, S.F.K. Bozorg, A.S. Golezani, R.P. Liavoli and A.A. Kashi, The Effect of Heat Treatment on Creep Behavior of GTD-111 Superalloy Welded by Pulsed Nd: YAG Laser Using Small Punch Test, Eng. Fail. Anal., 2021, 122, p 105255.

    Article  CAS  Google Scholar 

  41. Y. Li, X. Liang, G. Peng and F. Lin, Effect of Heat Treatments on the Microstructure and Mechanical Properties of IN738LC Prepared by Electron Beam Powder Bed Fusion, J Alloys Compd., 2022, 918, p 165807.

    Article  CAS  Google Scholar 

  42. L. Zhang, Y. Li, S. Zhang and Q. Zhang, Selective Laser Melting of IN738 Superalloy with a Low Mn+ Si Content: Effect of Energy Input on Characteristics of Molten Pool, Metallurgical Defects, Microstructures and Mechanical Properties, Mater. Sci. Eng. A, 2021, 826, p 141985.

    Article  CAS  Google Scholar 

  43. M. Zhong, H. Sun, W. Liu, X. Zhu and J. He, Boundary Liquation and Interface Cracking Characterization in Laser Deposition of Inconel 738 on Directionally Solidified Ni-based Superalloy, Scripta Mater., 2005, 53(2), p 159–164.

    Article  CAS  Google Scholar 

  44. J.M. Zhou, V. Bushlya, R.L. Peng, S. Johansson, P. Avdovic and J.E. Stahl, Effects of Tool Wear on Subsurface Deformation of Nickel-Based Superalloy, Proc. Eng., 2011, 19, p 407–413.

    Article  CAS  Google Scholar 

  45. B. AlMangour and D. Grzesiak, Selective Laser Melting of TiC Reinforced 316L Stainless Steel Matrix Nanocomposites: Influence of Starting TiC Particle Size and Volume Content, Mater. Des., 2016, 104, p 141–151.

    Article  CAS  Google Scholar 

  46. M. Paidar, O.O. Ojo, H.R. Ezatpour and A. Heidarzadeh, Influence of Multi-pass FSP on the Microstructure, Mechanical Properties and Tribological Characterization of Al/B4C Composite Fabricated by Accumulative Roll Bonding (ARB), Surf. Coat. Technol., 2019, 361, p 159–169.

    Article  CAS  Google Scholar 

  47. K. Qi, Y. Yang, R. Sun, G. Hu, X. Lu and J. Li, Effect of Magnetic Field on Tribological Properties of Co-Based Alloy Layer Produced by Laser Cladding on 42CrMo, Mater. Lett., 2021, 282, 128893.

    Article  CAS  Google Scholar 

  48. B. AlMangour, D. Grzesiak and J.M. Yang, Nanocrystalline TiC-Reinforced H13 Steel Matrix Nanocomposites Fabricated by Selective Laser Melting, Mater. Des., 2016, 96, p 150–161.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Taheri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Shirvani, K., Taheri, M. et al. Effect of TiC and Magnetic Field on Microstructure and Mechanical Properties of IN738 Superalloy Processed by Selective Laser Melting. J. of Materi Eng and Perform 33, 3494–3509 (2024). https://doi.org/10.1007/s11665-023-08228-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08228-2

Keywords

Navigation