Skip to main content
Log in

Effects of Induction Quenching on the Recrystallization Behavior of a Twin-Structured Mg-Mn Alloy

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Recrystallization is of great significance for improving the microstructure and mechanical properties of Mg alloys. Unlike isothermal annealing, induction quenching is featured by its higher heating rates and shorter process time and has shown great advantages in improving the mechanical properties of Fe-C alloy. However, the effect of induction quenching on the recrystallization behavior of Mg alloy has not been touched upon. Thus, we studied the effect of induction quenching on the static recrystallization behavior of Mg-Mn alloy containing {10–12} twins. The results showed that de-twinning occurs during induction quenching. The speed and degree of twin faded are related to loading conditions, induction heating temperature and twin size. Moreover, de-twinning occurs along with grain growth and nucleation of recrystallized grain. Recrystallization nucleates in the early stage of induction heating and the nucleation sites are mainly located at the junction of the grain boundary and the twin-grain boundary. In the meantime, grain growth is closely related to the total strain and induction heating temperature. Our results shed light on the influence of induction quenching on twin and grain evolution and hopefully provide a new heat treatment path for magnesium alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

The data presented in this study are available on request from the corresponding author. The data are not publicly available because pertain to a research still in development.

References

  1. W. Qiu, W. Xie, Q.F. Li, W.Y. Huang, L.B. Zhou, W. Chen, J. Chen, Y.J. Ren, M.H. Yao, A.H. Xiong, and Z.R. Zeng, Efect of Vanadium Nitride (VN) Particles on Microstructure and Mechanical Properties of Extruded AZ31 Mg Alloy, Acta Metall. Sin. (Engl. Lett.), 2023, 36, p 237–250.

    Article  CAS  Google Scholar 

  2. P.D. Huo, F. Li, R.Z. Wu, R.H. Gao, and A.X. Zhang, Annealing Coordinates the Deformation of Shear Band to Improve the Microstructure Difference and Simultaneously Promote the Strength-Plasticity of Composite Plate, Mater. Des, 2022, 219, p 110696.

    Article  CAS  Google Scholar 

  3. S. Wang, F.H. Gao, B.J. Lv et al., Correction to: Effects of 0.5 wt.% Nd Addition on the Microstructure and Mechanical Properties of As-Extruded and Aged Mg-6Al-3Sn-2Zn, Alloys J. Mater. Eng. Perform., 2022 https://doi.org/10.1007/s11665-022-07666-8

    Article  PubMed  Google Scholar 

  4. Y. Fu, L. Wang, Y. Feng et al., Effect of Gd/Y on Microstructure Evolution and Mechanical Properties of As-cast Mg-13(Gd, Y)-1Zn-1Al Alloys, J. Mater. Eng. Perform, 2022 https://doi.org/10.1007/s11665-022-07393-0

    Article  Google Scholar 

  5. G.Q. Xi, X.H. Zhao, Y.L. Ma, Y. Mou, J. Xiong, K. Ma, and J.F. Wang, Comparative Study on Corrosion Behavior and Mechanism of As-Cast Mg-Zn-Y and Mg-Zn-Gd Alloys, Acta Metall. Sin. (Engl. Lett.), 2023, 36, p 310–322.

    Article  CAS  Google Scholar 

  6. H.Q. Du, F. Li, P.D. Huo, and Y. Wang, Microstructure Evolution and Ductility Improvement Mechanisms of Magnesium Alloy in Interactive Alternating Forward Extrusion, Trans. Nonferrous Met. Soc., 2022, 32, p 2557–2568.

    Article  CAS  Google Scholar 

  7. H. Esmaeilpour, A. Zarei-Hanzaki, N. Eftekhari, H.R. Abedi, and M.R. Ghandehari Ferdowsi, Strain induced transformation, dynamic recrystallization and texture evolution during hot compression of an extruded Mg-Gd-Y-Zn-Zr alloy, Mater. Sci. Eng. A., 2020, 778, p 139021.

    Article  CAS  Google Scholar 

  8. L.W. Zheng, Y.P. Zhuang, J.J. Li, H.X. Wang, H. Li, H. Hou, L.F. Wang, X.P. Luo, and K.S. Shin, Mechanical Properties of Mg-Gd-Zr Alloy by Nd Addition Combined with Hot Extrusion, Trans. Nonferrous Met. Soc., 2022, 32, p 1866–1880.

    Article  CAS  Google Scholar 

  9. X.L. Ma, S.E. Prameela, P. Yi, M. Fernandezc, N.M. Krywopusk, L.J. Kecskes, T. Sano, M.L. Falk, and T.P. Weihs, Dynamic Precipitation and Recrystallization in Mg-9wt.% Al During Equal-Channel Angular Extrusion: A Comparative Study to Conventional Aging, Acta Mater., 2019, 172, p 185–199.

    Article  CAS  Google Scholar 

  10. M. Li, Y.C. Huang, Y. Liu, X. Wang, and Z. Wang, Effects of Heat Treatment Before Extrusion on Dynamic Recrystallization Behavior, Texture and Mechanical Properties of As-Extruded Mg-Gd-Y-Zn-Zr Alloy, Mater. Sci. Eng. A., 2022, 832, p 142479.

    Article  CAS  Google Scholar 

  11. S.H. Lu, D. Wu, R.S. Chen, and E.H. Han, Microstructure and Texture Optimization by Static Recrystallization Originating from 10–12 Extension Twins in a Mg-Gd-Y Alloy, J. Mater. Sci. Technol., 2020, 59, p 44–60.

    Article  CAS  Google Scholar 

  12. Z.Z. Jin, X.M. Cheng, M. Zha, J. Rong, H. Zhang, J.G. Wang, C. Wang, Z.G. Li, and H.Y. Wang, Effects of Mg17Al12 Second Phase Particles on Twinning-Induced Recrystallization Behavior in Mg-Al-Zn Alloys During Gradient Hot Rolling, J. Mater. Sci. Technol., 2019, 35, p 2017–2026.

    Article  CAS  Google Scholar 

  13. T.T. Liu, Q.S. Yang, N. Guo, Y. Lu, and B. Song, Stability of Twins in Mg Alloys: A Short Review, J. Magnes. Alloy., 2020, 8, p 66–77.

    Article  CAS  Google Scholar 

  14. J.J. Shi, K.X. Cui, B.S. Wang, L.P. Deng, C. Wang, Z.R. Xu, and Q. Li, Effect of Initial Microstructure on Static Recrystallization of Mg-3Al-1Zn Alloy, Mater Charact., 2017, 129, p 104–113.

    Article  CAS  Google Scholar 

  15. K. Zhang, Z.T. Shao, and J. Jiang, Effects of Twin–Twin Interactions and Deformation Bands on the Nucleation of Recrystallization in AZ31 Magnesium Alloy, Mater. Des., 2020, 194, p 108936.

    Article  CAS  Google Scholar 

  16. H. Kang, and D.H. Bae, Deformation Behavior of a Statically Recrystallized Mg-Zn-MM Alloy Sheet, Mater. Sci. Eng. A., 2013, 582, p 203–210.

    Article  CAS  Google Scholar 

  17. G.Q. Xi, J. Zhang, J.Q. Wu, J.S. Jia, and Y. Zhi, Observations on the Intersection Between 10–11 and 10–12 Twin in Deformed Magnesium Alloy, Kovove Mater., 2021, 59, p 231–236.

    Article  CAS  Google Scholar 

  18. H.P. Zheng, R.Z. Wu, L.G. Hou, J.H. Zhang, and M.L. Zhang, Mathematical Analysis and Its Experimental Comparisons for the Accumulative Roll Bonding (ARB) Process with Different Superimposed Layers, J. Magnes. Alloy., 2021, 9, p 1741–1752.

    Article  CAS  Google Scholar 

  19. J. Zhang, W.G. Li, and Z.X. Guo, Static Recrystallization and Grain Growth During Annealing of an Extruded Mg–Zn–Zr–Er Magnesium Alloy, J. Magnes. Alloy., 2013, 1, p 31–38.

    Article  CAS  Google Scholar 

  20. L.Y. Lee, Y.S. Yun, B.C. Suh, N.J. Kim, W.T. Kim, and D.H. Kim, Comparison of Static Recrystallization Behavior in Hot Rolled Mg-3Al-1Zn and Mg-3Zn-0.5 Ca Sheets, J. Alloy. Compd., 2014, 589, p 240–246.

    Article  CAS  Google Scholar 

  21. S.S.A. Shah, D. Wu, R.S. Chen, and G.S. Song, Static Recrystallization Behavior of Multi-Directional Impact Forged Mg-Gd-Y-Zr Alloy, J. Alloy. Compd., 2019, 805, p 189–197.

    Article  CAS  Google Scholar 

  22. M.H. Zhang, C.B. Li, Y. Zhang, S.D. Liu, J.Y. Jiang, J.G. Tang, L.Y. Ye, and X.M. Zhang, Effect of Hot Deformation on Microstructure and Quenching-Induced Precipitation Behavior of Al-Zn-Mg-Cu Alloy, Mater Charact., 2021, 172, p 110861.

    Article  CAS  Google Scholar 

  23. J.W. Huang, C.L. Xu, S.C. Liu, and F.Q. Jiang, Microstructure and Superior Quenching Sensitivity of a Novel Sc, Zr Alloyed Al-Zn-Mg-Cu Alloy, Mater. Lett., 2022, 309, p 131422.

    Article  CAS  Google Scholar 

  24. S. Sackl, M. Zuber, H. Clemens, and S. Primig, Induction Tempering vs Conventional Tempering of a Heat-Treatable Steel, Metall. Mater. Trans. A, 2016, 47, p 3694–3702.

    Article  CAS  Google Scholar 

  25. S. Sackl, H. Leitner, H. Clemens, and S. Primig, On the Evolution of Secondary Hardening Carbides During Continuous Versus Isothermal Heat Treatment of High Speed Steel HS 6-5-2, Mater Charact., 2016, 120, p 323–330.

    Article  CAS  Google Scholar 

  26. Z.J. Xie, Y.P. Fang, G. Han, H. Guo, R.D.K. Misr, and C.J. Shang, Structure–Property Relationship in a 960 MPa Grade Ultrahigh Strength Low Carbon Niobium–Vanadium Microalloyed Steel: The Significance of High Frequency Induction Tempering, Mater. Sci. Eng. A., 2014, 618, p 112–117.

    Article  CAS  Google Scholar 

  27. V.K. Judge, J.G. Speer, K.D. Clarke, K.O. Findley, and A.J. Clarke, Rapid thermal Processing to Enhance Steel Toughness, Sci. Rep., 2018, 8, p 445–451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. G.Q. Xi, J.D. Jin, Y.L. Ma, H. Chen, and J. Zhang, Interaction Between 10–12 and 30–34 Twin in Magnesium Alloy, J. Mater. Sci., 2022, 57, p 15109–15120.

    Article  CAS  Google Scholar 

  29. G.Q. Xi, J. Zhang, Y. Luo, J.H. Chen, and H. Chen, Study on the Twinning/De-twining Behavior of Different Types of Twin-Twin Interaction via Experiments and Molecular Dynamics Simulation, Met. Mater. Int., 2022 https://doi.org/10.1007/s12540-022-01275-9

    Article  Google Scholar 

  30. M.H. Li, L.W. Lu, Y.T. Fan, M. Ma, T. Zhou, F.G. Qi, H. Zhang, and Z.Q. Wu, Research on Microstructure Evolution and Deformation Behaviors of AZ31 Mg Alloy Sheets Processed by a New Severe Plastic Deformation with Different Temperatures, Mater. Today Commun., 2023, 34, p 105467. https://doi.org/10.1016/j.mtcomm.2023.105467

    Article  CAS  Google Scholar 

  31. C.H. Hou, F. Hu, F.G. Qi, N. Zhao, D.C. Zhang, X.P. Ouyang, and D.F. Zhang, Aging Hardening and Precipitate Behavior of a Solution-Treated Mg-6Zn-4Sn-1Mn (wt.%) Wrought Mg Alloy, J. Alloy. Compd., 2021, 889, p 161640.

    Article  Google Scholar 

  32. Y. Zhang, C. Jiang, S.H. Sun, W. Xu, Q. Yang, Y.J. Zhang, S.W. Tian, X.G. Duan, Z. Xu, and H.T. Jiang, Microstructural Evolution during Tensile Deformation in TRC-ZA21 Magnesium Alloy with Different Loading Directions and Strain Rates, Acta Metall. Sin. (Engl. Lett.), 2023, 36, p 192–214.

    Article  CAS  Google Scholar 

  33. X.H. Pan, L.F. Wang, Y.Q. Li, L.L. Xue, P.B. Lu, G.S. Huang, B. Xing, L.W. Zheng, H.X. Wang, and F.G. Qi, Twinning and Dynamic Recrystallization Behaviors During Inchoate Deformation of Pre-Twinned AZ31 Mg Alloy Sheet at Elevated Temperatures, J. Alloy. Compd., 2022, 917, p 165495. https://doi.org/10.1016/j.jallcom.2022.165495

    Article  CAS  Google Scholar 

  34. H.B. Liao, L.L. Mo, C.B. Li, M.Y. Zhan, and J. Du, Grain Refinement of Mg-Al Binary Alloys Inoculated by In-Situ Oxidation, Trans. Nonferrous Met. Soc., 2022, 32, p 3212–3221.

    Article  CAS  Google Scholar 

  35. X. Zhou, L.L. Mo, and J. Du, Phase Characterization and Properties Regulation of Mg-4Sn-La-Ca Alloy, Mater Charact., 2022, 194, p 112274. https://doi.org/10.1016/j.matchar.2022.112274

    Article  CAS  Google Scholar 

  36. K. Jiang, M.H. Zhou, H.X. Wu, S.Z. Liu, Y.J. Wu, and Y. Liu, Achieving the Synergistic of Strength and Ductility in Mg-15Gd-1Zn-0.4Zr Alloy with Hierarchical Structure, J. Magnes. Alloy., 2023 https://doi.org/10.1016/j.jma.2023.01.002

    Article  Google Scholar 

  37. F.Y. Chen, P.C. Guo, Z.H. Jiang, X. Liu, T.J. Song, and C. Xie, Abnormal Twinning Behavior and Constitutive Modeling of a Fine-Grained Extruded Mg-8.0Al-0.1Mn-2.0Ca Alloy under High-Speed Impact along Various Directions, Acta Metall. Sin. (Engl. Lett.), 2023, 36, p 281–294.

    Article  CAS  Google Scholar 

  38. F.L. Wang, Y.J. Gu, R.J. McCabe, L. Capolungo, J.A. El-Awady, and S.R. Agnew, <c+a>Dislocations in 10–12 Twins in Mg: A Kinematic and Energetic Requirement, Acta Mater, 2020, 195, p 13–24.

    Article  CAS  Google Scholar 

  39. J. Xu, B. Guan, H.H. Yu, X.Z. Cao, Y.C. Xin, and Q. Liu, Effect of Twin Boundary–Dislocation–Solute Interaction on Detwinning in a Mg–3Al–1Zn Alloy, J. Mater. Sci. Technol, 2016, 32, p 1239–1244.

    Article  CAS  Google Scholar 

  40. Y. Chen, Y.J. Fu, Y.C. Xin, G. Chen, P.D. Wu, X.X. Huang, and Q. Liu, 10–12 Twinning Behavior Under Biaxial Tension of Mg–3Al–1Zn Plate, Int. J. Plast, 2020, 132, p 102754.

    Article  Google Scholar 

  41. A. Levinson, R.K. Mishra, R.D. Doherty, and S.R. Kalidindi, Influence of Deformation Twinning on Static Annealing of AZ31 Mg Alloy, Acta Mater, 2013, 61, p 5966–5978.

    Article  CAS  Google Scholar 

  42. Y.C. Xin, H. Zhou, G.L. Wu, H.H. Yu, A. Chapuis, and Q. Liu, A Twin Size Effect on Thermally Activated Twin Boundary Migration in a Mg–3Al–1Zn Alloy, Mater. Sci. Eng. A., 2015, 639, p 534–539.

    Article  CAS  Google Scholar 

  43. L.Y. Zhao, Y.C. Xin, Z.Y. Jin, J. Wang, B. Feng, and Q. Liu, Thermal Stability of Different Texture Components in Extruded Mg-3Al-1Zn Alloy, J. Magnes. Alloy., 2019, 7, p 577–583.

    Article  CAS  Google Scholar 

  44. X.Q. Guo, Y. Chen, Y.C. Xin, W. Wu, C. Ma, K. An, P.K. Liaw, P.D. Wu, and Q. Liu, Crystal Plasticity Modeling of Low-Cycle Fatigue Behavior of an Mg-3Al-1Zn Alloy Based on a Model, Including Twinning and Detwinning Mechanisms, J. Mech. Phys. Solids, 2022, 58, p 105030.

    Article  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the Program for Chongqing Talents Exellent Scientist, the Key-Area Research and Development Program of Guangdong Province (2020B010186002), the National Natural Science Foundation of China (52201108) and the Natural Science Foundation of Chongqing (cstc2021jcyj-bshX0114)

Author information

Authors and Affiliations

Authors

Contributions

Guoqiang Xi: Investigation, Methodology, Data curation, Writing—original draft, Writing—review & editing. Xueyan Mo, Software, Methodology, Data curation, Investigation. Jing Zhang: Conceptualization, Supervision, Funding acquisition, Validation, Investigation, Methodology, Data curation, Writing—original draft, Writing—review & editing.

Corresponding author

Correspondence to Jing Zhang.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, G., Mo, X. & Zhang, J. Effects of Induction Quenching on the Recrystallization Behavior of a Twin-Structured Mg-Mn Alloy. J. of Materi Eng and Perform 33, 3353–3373 (2024). https://doi.org/10.1007/s11665-023-08212-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08212-w

Keywords

Navigation