Skip to main content
Log in

Effects of Heat Treatment on Microstructure, Mechanical Properties, and Residual Stress of Oscillation Laser–Tungsten Inert Gas Hybrid Welded Joints for SA-738Gr.B Steel

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This paper adopted the new process of double-sided oscillation laser autogenous backing welding and double-sided oscillation laser–TIG hybrid filling welding to achieve 80 mm thick SA-738Gr.B steel narrow gap welding in the horizontal position. The microstructure, mechanical properties, and residual stress of the welded joints in the as-welded (AW) state and in the post-weld heat treatment (PWHT) state were analyzed comparatively. The results show that because of the high-temperature tempering effect of PWHT, the microstructure of the welded joint is transformed into a high-temperature tempered microstructure with the increase in alloy carbide precipitation. The grains growth of the backing weld and the base material is obvious. The relative frequency of the high-angle grain boundary of the weld increases. Under the PWHT, the tensile strength of the welded joint decreases, and the residual stresses of the welded joint are redistributed and reduced significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Y. Zhang, H. Hui, J. Zhang, Z. Zhou, X. Hu, and X. Cong, Prediction of Fracture Toughness of SA738Gr.B Steel in the Ductile-Brittle Transition Using Master Curve Method and Bimodal Master Curve Method, Int. J. Press. Vessel. Pip., 2020, 182, p 104033. https://doi.org/10.1016/j.ijpvp.2019.104033

    Article  CAS  Google Scholar 

  2. J. Zhang, D. Cong, Y. Gu, and Y. Yu, Mechanical Properties of Welded Joint of SA 738 Gr.B, Electri. Weld. Mach., 2018, 48(09), p 26–31. https://doi.org/10.7512/j.issn.1001-2303.2018.09.05. (in Chinese)

    Article  Google Scholar 

  3. Y. Ma, G. Ran, N. Chen, P. Lei, and Q. Shen, Investigation of Mechanical Properties and Proton Irradiation Behaviors of SA-738 Gr.B Steel Used as Reactor Containment, Nucl. Mater. Energy, 2016, 8, p 18–22. https://doi.org/10.1016/j.nme.2016.07.010

    Article  Google Scholar 

  4. H.B. Liu, H.Q. Zhang, and J.F. Li, Toughness of SA738Gr.B steel Used for Nuclear Containment Vessel, Int. J. Press. Vessel. Pip., 2018, 168, p 200–209. https://doi.org/10.1016/j.ijpvp.2018.10.017

    Article  CAS  Google Scholar 

  5. L.Z. Ding, Y. Lei, J. Zhang, and Q.S. Meng, An Investigation into the Weldability of SA-738Gr.B Steel, Mater. Res. Innovations, 2015, 19(sup5), p 1197–1201. https://doi.org/10.1179/1432891714Z.0000000001277

    Article  CAS  Google Scholar 

  6. L. Ding, Researches on weldability and welding procedure for containment vessel and its accessories for AP1000 nuclear power [dissertation]. Taiyuan University of Technology, 2015. (in Chinese)

  7. M. Jiang, W. Tao, Y. Chen, and F. Li, Comparison of Processing Window in Full Penetration Laser Welding of Thick High-Strength Steel Under Atmosphere and Sub-Atmosphere, Opt. Laser Technol., 2019, 109, p 449–455. https://doi.org/10.1016/j.optlastec.2018.08.023

    Article  CAS  Google Scholar 

  8. J. Long, L.-J. Zhang, M.-X. Zhuang, L.-A. Bai, and S.-J. Na, Narrow-Gap Laser Welding with Beam Wobbling and Filler Wire and Microstructural Performance of Joints of Thick TC4 Titanium Alloy Plates, Opt. Laser Technol., 2022, 152, p 108089. https://doi.org/10.1016/j.optlastec.2022.108089

    Article  CAS  Google Scholar 

  9. J. Shen, R. Gonçalves, Y.T. Choi, J.G. Lopes, J. Yang, N. Schell, H.S. Kim, and J.P. Oliveira, Microstructure and Mechanical Properties of Gas Metal Arc Welded CoCrFeMnNi Joints Using a 308 Stainless Steel Filler Metal, Scr. Mater., 2023, 222, p 115053. https://doi.org/10.1016/j.scriptamat.2022.115053

    Article  CAS  Google Scholar 

  10. J. Shen, P. Agrawal, T.A. Rodrigues, J.G. Lopes, N. Schell, Z. Zeng, R.S. Mishra, and J.P. Oliveira, Gas Tungsten Arc Welding of As-cast AlCoCrFeNi2.1 Eutectic High Entropy Alloy, Mater Des, 2022, 223, p 111176. https://doi.org/10.1016/j.matdes.2022.111176

    Article  CAS  Google Scholar 

  11. J.P. Oliveira, A. Shamsolhodaei, J. Shen, J.G. Lopes, R.M. Gonçalves, F.M. de Brito, L. Piçarra, Z. Zeng, N. Schell, N. Zhou, and K.H. Seop, Improving the Ductility in Laser Welded Joints of CoCrFeMnNi High Entropy Alloy to 316 Stainless Steel, Mater. Des., 2022, 219, p 110717. https://doi.org/10.1016/j.matdes.2022.110717

    Article  CAS  Google Scholar 

  12. J.P. Oliveira, N. Schell, N. Zhou, L. Wood, and O. Benafan, Laser Welding of Precipitation Strengthened Ni-rich NiTiHf High Temperature Shape Memory Alloys: Microstructure and Mechanical Properties, Mater. Des., 2019, 162, p 229–234. https://doi.org/10.1016/j.matdes.2018.11.053

    Article  CAS  Google Scholar 

  13. L. Wang, M. Gao, C. Zhang, and X. Zeng, Effect of Beam Oscillating Pattern on Weld Characterization of Laser Welding of AA6061-T6 Aluminum Alloy, Mater Des, 2016, 108, p 707–717. https://doi.org/10.1016/j.matdes.2016.07.053

    Article  CAS  Google Scholar 

  14. F. Fetzer, M. Sommer, R. Weber, J.-P. Weberpals, and T. Graf, Reduction of Pores by Means of Laser Beam Oscillation During Remote Welding of AlMgSi, Opt. Laser Eng., 2018, 108, p 68–77. https://doi.org/10.1016/j.optlaseng.2018.04.012

    Article  Google Scholar 

  15. V. Schultz, T. Seefeld, and F. Vollertsen, Gap Bridging Ability in Laser Beam Welding of Thin Aluminum Sheets, Phys. Procedia., 2014, 56, p 545–553. https://doi.org/10.1016/j.phpro.2014.08.037

    Article  CAS  Google Scholar 

  16. C. Chen, W. Wang, D. Li, Y. Cai, Y. Zhang, and K. Zhang, Effect of Beam Oscillation on Microstructure and Properties of Laser-TIG Hybrid Welding of D406A Ultra-High Strength Steel, J. Manuf. Process., 2020, 57, p 798–805. https://doi.org/10.1016/j.jmapro.2020.07.048

    Article  Google Scholar 

  17. A. Mahrle and E. Beyer, Hybrid Laser Beam Welding—Classification, Characteristics, and Applications, J. Laser Appl., 2006, 18(3), p 169–180. https://doi.org/10.2351/1.2227012

    Article  Google Scholar 

  18. B. Hu and G. den Ouden, Synergetic Effects of Hybrid laser/arc Welding, Sci. Technol. Weld. Joining., 2013, 10(4), p 427–431. https://doi.org/10.1179/174329305X44170

    Article  Google Scholar 

  19. B. Acherjee, Hybrid Laser Arc Welding: State-of-Art Review, Opt. Laser Technol., 2018, 99, p 60–71. https://doi.org/10.1016/j.optlastec.2017.09.038

    Article  CAS  Google Scholar 

  20. S.D. Banik, S. Kumar, P.K. Singh, S. Bhattacharya, and M.M. Mahapatra, Prediction of Distortions and Residual Stresses in Narrow Gap Weld Joints Prepared by Hot Wire GTAW and its Validation with Experiments, Int. J. Press. Vessel. Pip., 2021, 193, p 104477. https://doi.org/10.1016/j.ijpvp.2021.104477

    Article  CAS  Google Scholar 

  21. J. Huang, H. Chen, J. He, S. Yu, and D. Fan, Narrow Gap Applications of Swing TIG-MIG Hybrid Weldings, J. Mater. Process. Technol., 2019, 271, p 609–614. https://doi.org/10.1016/j.jmatprotec.2019.04.043

    Article  CAS  Google Scholar 

  22. Z. Tian, Z. Qu and Z. Du, Grain Growth and Microstructure Transformation in Heat Affected Zone of Fine-Grain Steels, Mater. Sci. Technol., 2000, 03, p 16–20. https://doi.org/10.3969/j.issn.1005-0299.2000.03.004

    Article  Google Scholar 

  23. Z. Jiang, Effects of High-Temperature Tempering on Mechanical Properties and Microstructure of SA738 Gr.B Steel, Metals, 2020, 10, p 1207. https://doi.org/10.3390/met10091207

    Article  CAS  Google Scholar 

  24. Z. Jiang, X. Chen, H. Li, Z. Lei, Y. Chen, S. Wu, and Y. Wang, Grain Refinement and Laser Energy Distribution During Laser Oscillating Welding of Invar Alloy, Mater. Des., 2020, 186, p 108195. https://doi.org/10.1016/j.matdes.2019.108195

    Article  CAS  Google Scholar 

  25. J. Zhang, S. Liu and Y. Gu, Effect of PWHT on Impact Property and Fracture Toughness of SA 738 Gr.B Steel Heat Affected Zone, Press. Vessel Technol., 2021, 38(08), p 29–33. https://doi.org/10.3969/j.issn.1001-4837.2021.08.005. ((in Chinese))

    Article  Google Scholar 

  26. C. Zurbuchen, H.-W. Viehrig and F.-P. Weiss, Master Curve and Unified Curve Applicability to Highly Neutron Irradiated Western Type Reactor Pressure Vessel Steels, Nucl. Eng. Des., 2009, 239(7), p 1246–1253. https://doi.org/10.1016/j.nucengdes.2009.03.008

    Article  CAS  Google Scholar 

  27. K. Wallin, Structural Integrity Assessment Aspects of the Master Curve methodology, Eng. Fract. Mech., 2010, 77(2), p 285–292. https://doi.org/10.1016/j.engfracmech.2009.02.010

    Article  Google Scholar 

  28. X.Z. Zhang and J.F. Knott, Cleavage Fracture in Bainitic and Martensitic Microstructures, Acta Mater., 1999, 47(12), p 3483–3495. https://doi.org/10.1016/S1359-6454(99)00200-1

    Article  CAS  Google Scholar 

  29. M. Zrilic, V. Grabulov, Z. Burzic, M. Arsic, and S. Sedmak, Static and Impact Crack Properties of a High-Strength Steel Welded Joint, Int. J. Press. Vessel Pip., 2007, 84(3), p 139–150. https://doi.org/10.1016/j.ijpvp.2006.09.021

    Article  CAS  Google Scholar 

  30. X.D. Zuo, W. Zhang, J.P. Olineira, Y. Li, Z. Zeng, Z. Luo, and S.S. Ao, Wire-based Directed Energy Deposition of NiTiTa Shape Memory Alloys: Microstructure, Phase Transformation, Electrochemistry, X-ray Visibility and Mechanical Properties, Addit. Manuf., 2022, 59, p 103115. https://doi.org/10.1016/j.addma.2022.103115

    Article  CAS  Google Scholar 

  31. C. Zhao, Z. Wang, D. Li, L. Kollo, Z. Luo, W. Zhang, and K.G. Prashanth, Selective Laser Melting of Cu–Ni–Sn: A Comprehensive Study on the Microstructure, Mechanical Properties, and Deformation Behavior, Int. J. Plast., 2021, 138, p 102926. https://doi.org/10.1016/j.ijplas.2021.102926

    Article  CAS  Google Scholar 

  32. A. Kundu and D.P. Field, Influence of Plastic Deformation Heterogeneity on Development of Geometrically Necessary dislocation density in dual phase steel, Mater. Sci. Eng, A, 2016, 667, p 435–443. https://doi.org/10.1016/j.msea.2016.05.022

    Article  CAS  Google Scholar 

  33. D. Wang, K. Zheng, C. Deng, B. Gong, S. Wu, and N. Xiao, Effects of PWHT on the Impact Toughness and Fracture Toughness of the Weld Metal Under Restraint Welding, Trans. China Weld. Inst., 2020, 41(08), p 63–67. https://doi.org/10.12073/j.hjxb.20190914001

    Article  CAS  Google Scholar 

  34. S. Cui, Y. Shi, K. Sun, and S. Gu, Microstructure Evolution and Mechanical Properties of Keyhole Deep Penetration TIG Welds of S32101 Duplex Stainless Steel, Mater. Sci. Eng, A, 2018, 709, p 214–222. https://doi.org/10.1016/j.msea.2017.10.051

    Article  CAS  Google Scholar 

  35. Y. Wang, D. Sun, C. Wang, G. Li, and D. Wu, Effect of Simulated Post- Welded Heat Treatment on Microstructure and Impact Properties of SA-738Gr B Steel Plate, Press. Vessel Technol., 2014, 31(01), p 10–14. https://doi.org/10.3969/j.issn.1001-4837.2014.01.002

    Article  CAS  Google Scholar 

  36. B. Yu, P. Wang, X. Song, and S. Huo, The Residual Stress Relief of Post Weld Heat Treatment in SMA490BW Welded Joints: Simulation and Experiment, Int. J. Press. Vessel. Pip., 2022, 200, p 104852. https://doi.org/10.1016/j.ijpvp.2022.104852

    Article  CAS  Google Scholar 

  37. Z. Zhang, P. Ge and G.Z. Zhao, Numerical Studies of Post Weld Heat Treatment on Residual Stresses in Welded Impeller, Int. J. Press. Vessel. Pip., 2017, 153, p 1–14. https://doi.org/10.1016/j.ijpvp.2017.05.005

    Article  Google Scholar 

  38. Q. Jin, W. Jiang, W. Gu, J. Wang, G. Li, X. Pan, M. Song, K. Zhang, A. Wu, and S.-T. Tu, A Primary Plus Secondary Local PWHT Method for Mitigating Weld Residual Stresses in Pressure Vessels, Int. J. Press. Vessel Pip., 2021, 192, p 104431. https://doi.org/10.1016/j.ijpvp.2021.104431

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to the Liao Ning Revitalization Talents Program (No. XLYC190203), National Key R and D Program of China (No.2018YFB1107900), National Natural Science Foundation of China (Nos. U1933129 and U21B2079), Key Program of the Natural Science Foundation of Tianjin (No.19JCZDJC39000 and 22YFFCYS00090), and the Open Research Fund of State Key Laboratory of High-Performance Complex Manufacturing, Central South University (Kfkt2021-13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Luo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Luo, Z. & Ao, S. Effects of Heat Treatment on Microstructure, Mechanical Properties, and Residual Stress of Oscillation Laser–Tungsten Inert Gas Hybrid Welded Joints for SA-738Gr.B Steel. J. of Materi Eng and Perform 33, 2694–2710 (2024). https://doi.org/10.1007/s11665-023-08202-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08202-y

Keywords

Navigation