Skip to main content
Log in

Microstructure Evolution and Hardness of Hypereutectic High Chromium Cast Iron after Tempering

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effect of the tempering process on the microstructure evolution and hardness of 35 wt.%Cr-4 wt.%C Hypereutectic High Chromium Cast Iron (HHCCI) was studied by means of the scanning electron microscope and transmission electron microscope. The results show that with the increase in tempering temperature, the primary and eutectic carbides of HHCCI have no significant change, and the precipitation of secondary carbides in the matrix increases at first and then decreases. From the TEM analysis results, the secondary carbides after tempering are M23C6, which are rectangular, and with the extension of tempering time, a small part of eutectic carbides decompose and dissolve into the matrix, and the secondary carbides continue to precipitate and grow, and the length can reach several microns to more than 10 microns. With the increase in tempering temperature, the hardness of HHCCI increases, and the hardness tends to decrease when it exceeds 500 °C. After tempering for 6 h, the precipitation of secondary carbides in the matrix reaches the maximum, and the hardness of HHCCI reaches the maximum. After tempering holding time for more than 6 h, the hardness of HHCCI decreases continuously due to the aggregation and growth of secondary carbides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. J. Wang, X. Ji, H. Fan, H.S. Yang, H.H. Liu, and B.L. Shen, Effects of High Temperature and Cryogenic Treatment on the Microstructure and Abrasion Resistance of a High Chromium Cast Iron, J. Mater. Process. Technol., 2009, 209(7), p 3236–3240.

    Article  CAS  Google Scholar 

  2. Q.H. Cen, H.B. Zhang, and H.G. Fu, Effect of Heat Treatment on Structure and Wear Resistance of High Chromium Cast Steel Containing Boron, J. Iron Steel Res. Int., 2014, 21(5), p 532–538.

    Article  CAS  Google Scholar 

  3. X.H. Zhi, J.D. Xing, H.G. Fu, and M. Yi, Effect of Titanium on the As-Cast Microstructure of Hypereutectic High Chromium Cast Iron, Mater. Charact., 2008, 59(9), p 1221–1226.

    Article  CAS  Google Scholar 

  4. N. Barnes, S. Clark, S. Seetharaman, and P.F. Mendez, Growth Mechanism of Primary Needles During the Solidification of Chromium Carbide Overlays, Acta Mater., 2018, 151, p 356–365.

    Article  CAS  Google Scholar 

  5. Z.Y. Zhao, R.B. Song, Y.C. Zhang, P. Yu, and Y. Pei, Co-orientation Relationship between Secondary Carbides and Adjacent Ferrite after Quenching and Tempering in High Chromium Cast Iron, Vacuum, 2021, 184, p 109911.

    Article  CAS  Google Scholar 

  6. Y.C. Li, P. Li, K. Wang, H.Z. Li, M.Y. Gong, and W.P. Tong, Microstructure and Mechanical Properties of a Mo Alloyed High Chromium Cast Iron After Different Heat Treatments, Vacuum, 2018, 156, p 59–67.

    Article  CAS  Google Scholar 

  7. M.A. Guitar, S. Suárez, O. Prat, M. Duarte Guigou, V. Gari, G. Pereira, and F. Mücklich, High Chromium Cast Irons: Destabilized-Subcritical Secondary Carbide Precipitation and Its Effect on Hardness and Wear Properties, J. Mater. Eng. Perform., 2018, 27(8), p 3877–3885.

    Article  CAS  Google Scholar 

  8. A.S. Jain, H.W. Chang, X.H. Tang, B. Hinckley, and M.X. Zhang, Refinement of Primary Carbides in Hypereutectic High-Chromium Cast Irons: a review, J. Mater. Sci., 2021, 56(2), p 999–1038.

    Article  CAS  Google Scholar 

  9. L. Lu, H. Soda, and A. Mclean, Microstructure and Mechanical Properties of Fe–Cr–C Eutectic Composites, Mater. Sci. Eng. A., 2003, 347(1), p 214–222.

    Article  Google Scholar 

  10. Q. Guo, H.G. Fu, X.Y. Guo, Z.G. Xing, and J. Lin, Microstructure and Properties of Modified As-Cast Hypereutectic High Chromium Cast Iron, Materialwiss. Werkstofftech., 2022, 2, p 53.

    Google Scholar 

  11. S. Zhou, Y. Shen, H. Zhang, and D. Chen, Heat Treatment Effect on Microstructure, Hardness and Wear Resistance of Cr26 White Cast Iron, Chin. J. Mech. Eng., 2015, 28(1), p 140–147.

    Article  CAS  Google Scholar 

  12. S. Inthidech, K. Boonmak, P. Sricharoenchai, N. Sasaguri, and Y. Matsubara, Effect of Repeated Tempering on Hardness and Retained Austenite of High Chromium Cast Iron Containing Molybdenum, Mater. Trans., 2010, 51(7), p 1264–1271.

    Article  CAS  Google Scholar 

  13. G.P. Alejandro, A.L. Juan, Á.A. Florentino, and G.D. Ana, Improvement of Impact Toughness and Abrasion Resistance of a 3C–25Cr-0.5Mo Alloy Using a Design of Experiment Statistical Technique: Microstructural Correlations after Heat Treatments, Metals, 2021, 11(4), p 595.

    Article  Google Scholar 

  14. A.F. Farah, O.R. Crnkovic, and L.C.F. Canale, Heat Treatment in High Cr White Cast Iron Nb Alloy, J. Mater. Eng. Perform., 2001, 10(1), p 42–45.

    Article  CAS  Google Scholar 

  15. K.K. Singh, R.S. Verma, and G.M.D. Murty, Optimizing Wear Resistance and Impact Toughness in High Chromium Iron Mo-Ni Alloy, J. Mater. Eng. Perform., 2009, 18(4), p 438–440.

    Article  CAS  Google Scholar 

  16. Z.Y. Chen, Q. Guo, H.G. Fu, and X.H. Zhi, Effect of Heat Treatment on Microstructure and Properties of Modified Hypereutectic High Chromium Cast Iron, Mater. Test., 2022, 64(1), p 33–54.

    Article  Google Scholar 

  17. A. Wiengmoon, T. Chairuangsri, A. Brown, R. Brydson, D.V. Edmonds, and J.T.H. Pearce, Microstructural and Crystallographical Study of Carbides in 30wt.%Cr Cast Irons, Acta Mater., 2005, 53(15), p 4143–4154.

    Article  CAS  Google Scholar 

  18. J.J. Hao, J. Chen, and P.D. Han, Solid Phase Decarburization Kinetics of High-Carbon Ferrochrome Powders in the Microwave Field, Steel Res. Int., 2014, 85(3), p 461–465.

    Article  CAS  Google Scholar 

  19. K. Weber, D. Regener, H. Mehner, and M. Menzel, Characterization of the Microstructure of High-Chromium Cast Irons Using Mossbauer Spectroscopy, Mater. Charact., 2001, 46(5), p 399–406.

    Article  CAS  Google Scholar 

  20. G.M. Agustina, S. Anna, S. Sebastián, B. Dominik, G.M. Duarte, and M. Frank, Secondary Carbides in High Chromium Cast Irons: An Alternative Approach to Their Morphological and Spatial Distribution Characterization, Mater. Charact., 2018, 144, p 621–630.

    Article  Google Scholar 

  21. G. Powell and G. Laird, Structure, Nucleation, Growth and Morphology of Secondary Carbides in High Chromium and Cr-Ni White Cast Irons, J. Mater. Sci., 1992, 27(1), p 29–35.

    Article  CAS  Google Scholar 

  22. A. Wiengmoon, J.T.H. Pearce, S. Nusen, and T. Chairuangsri, Electron Microscopy Study of Carbides Precipitated During Destabilization and Tempering Heat Treatments of 25 wt.%Cr-07 wt.%Mo High Chromium Cast Irons, Micron, 2021, 143, p 103025.

    Article  CAS  PubMed  Google Scholar 

  23. J. Guo, L. Liu, Y. Feng, S. Liu, X. Ren, and Q. Yang, Crystallographic Characterizations of Eutectic and Secondary Carbides in a Fe-12Cr-2.5Mo-1.5W-3V-1.25C Alloy, Met. Mater. Int., 2017, 23(2), p 313–319.

    Article  CAS  Google Scholar 

  24. C.M. Lin, H.H. Lai, J.C. Kuo, and W. Wu, Effect of Carbon Content on Solidification Behaviors and Morphological Characteristics of the Constituent Phases in Cr-Fe-C Alloys, Mater. Charact., 2011, 62(12), p 1124–1133.

    Article  CAS  Google Scholar 

  25. W. Yong, Y.L. Mei, B. Han, H. Tao, and Y.C. Yi, Influence of Secondary Carbides Precipitation and Transformation on the Secondary Hardening of Laser Melted High Chromium Steel, J. Mater. Sci., 2010, 45(13), p 3442–3447.

    Article  Google Scholar 

  26. S. Imurai, C. Thanachayanont, J.T.H. Pearce, K. Tsuda, and T. Chairuangsri, Effects of Mo on Microstructure of As-Cast 28 wt.%Cr-2.6 wt.%C-(0-10) wt.%Mo Irons, Mater. Charact., 2014, 90, p 99–112.

    Article  CAS  Google Scholar 

  27. H.G. Fu, Effect of Tempering on The Structure and Property of Rich Chromium Cast Iron, Heat Treat. Met., 1994, 12, p 7–9.

    Google Scholar 

Download references

Acknowledgment

The authors would like to thank the financial support for this work from National Natural Science Foundation of China (52075010), and Hebei Science and Technology Major Project (22281005Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu Hanguang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yawei, L., Wei, L., Penghui, Y. et al. Microstructure Evolution and Hardness of Hypereutectic High Chromium Cast Iron after Tempering. J. of Materi Eng and Perform 33, 2724–2735 (2024). https://doi.org/10.1007/s11665-023-08197-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08197-6

Keywords

Navigation