Skip to main content
Log in

Effect of Alumina Concentration on Morphology, Wear, and Corrosion: Electroless Ni-W-P/Al2O3 Composite Coatings on Aluminum Surfaces

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Electroless nickel-based coatings are frequently used in the field of coatings to improve the surface properties of materials such as wear, hardness, and corrosion. In this study, Ni-W-P alloy and Ni-W-P/Al2O3 composites were coated on the aluminum substrate by electroless technique. Composite coatings were carried out after suspending process of alumina (Al2O3) particles at different concentrations in the electroless bath. The characterizations of the coatings were studied to be able to reach optimum particle concentration. Aluminum oxide particles (average particle size 300 nm) with different concentrations (5, 10, 15, 20 g/L) were added to the bath to determine the concentration effect. Scanning electron microscope (SEM) and field emission scanning electron microscopy (FESEM) analyses were performed to examine the microstructure images of the composite coatings. x-ray diffraction (XRD) analysis was performed to determine the coating layers' phase structures. The hardness of the coatings was determined by applying the hardness test on a microscopic scale. CSM tribometer was used to establish the wear and friction properties of the coatings. Galvanometer was used to determine corrosion resistance. After the studies, hardness values of coatings were successfully increased from 552 to 700 HV depending on the amount of particles in the coating layer. The friction coefficient was also improved by decreasing that from 0.45 to 0.1 µ grades with the contribution of Al2O3 particle reinforcement to Ni-W-P coating. The wear rate of the coatings decreased from 5.96 × 10 −5 to 3.16 × 10−5 mm3/Nm\()\) with the increase of Al2O3 particles in the composite coating which indicates approximately two times improvement in the wear resistance. The corrosion resistance of composite coatings also increased, and an improvement in corrosion rate was achieved from 392 value to 063µm/year value with increasing particle concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A. Brenner and G.E. Riddell, Nickel Plating on Steel by Chemical Reduction, Plat. Surf. Finish., 1998, 85(8), p 54–56. https://doi.org/10.6028/jres.037.019

    Article  Google Scholar 

  2. H. Harada, Electroless Plating: Fundamentals and Applications, Journal of the Japan Society of Colour Material, 1996, 69(1), p 60–70. https://doi.org/10.4011/shikizai1937.69.60

    Article  CAS  Google Scholar 

  3. C.R. Shipley, Historical Highlights of Electroless Plating, Plat. Surf. Finish., 1984, 82(9), p 13–24.

    Google Scholar 

  4. P. Sahoo and S.K. Das, Tribology of Electroless Nickel Coatings–A review, Mater. Des., 2011, 32(4), p 1760–1775. https://doi.org/10.1016/j.matdes.2010.11.013

    Article  CAS  Google Scholar 

  5. P. Biswas, S.K. Das, and P. Sahoo, Role of Heat Treatment on the Friction and Wear Behavior of Duplex Electroless Nickel Deposits, Mater. Today Proc., 2022, 66, p 3902–3909. https://doi.org/10.1016/J.MATPR.2022.06.322

    Article  CAS  Google Scholar 

  6. P. Biswas, S.K. Das, and P. Sahoo, Duplex Electroless Ni-P/Ni-P-W Coatings: Effect of Heat Treatment on Tribological and Corrosion Performance, Mater. Today Proc., 2022, 66, p 2237–2244. https://doi.org/10.1016/J.MATPR.2022.06.042

    Article  CAS  Google Scholar 

  7. J. Flagel, “Top 10 Uses of Aluminium in the Industry Today,” Matmatch, 2020. https://matmatch.com/blog/top-10-uses-of-aluminium-in-the-industry-today/ (Accessed Sep. 26, 2021)

  8. J. Zang, S. Yu, G. Zhu, and X. Zhou, Fabrication of Superhydrophobic Surface on Aluminum Alloy 6061 by a Facile and Effective Anodic Oxidation Method, Surf Coat Technol, 2019, 380, p 125078. https://doi.org/10.1016/J.SURFCOAT.2019.125078

    Article  CAS  Google Scholar 

  9. S.K. Das and P. Sahoo, Electroless Nickel-Phosphorus Deposits, Electroless Nickel Plating. CRC Press, 2019

    Google Scholar 

  10. W. Li, H. Liao, and H. Wang, “Cold Spraying of Light Alloys, Surface Engineering of Light Alloys: Aluminium, Magnesium and Titanium Alloys. Elsevier, 2010, p 242–293

    Chapter  Google Scholar 

  11. F. Nassoy et al., Growth of Vertically Aligned Carbon Nanotubes on Aluminium Substrate Through a One-Step Thermal CVD Process, Nanotechnology, 2019, 8(61), p 9–16.

    Google Scholar 

  12. S. Tan, H. Algül, E. Kiliçaslan, A. Alp, H. Akbulut, and M. Uysal, The Effect of Ultrasonic Power on High Temperature Wear and Corrosion Resistance for Ni Based Alloy Composite Coatings, Colloids Surf. A Physicochem. Eng. Asp, 2023, 656, p 130345. https://doi.org/10.1016/J.COLSURFA.2022.130345

    Article  CAS  Google Scholar 

  13. S.H. Hashemi and A. Ashrafi, Characterisations of Low Phosphorus Electroless Ni and Composite Electroless Ni-P-SiC Coatings on A356 Aluminium Alloy, Trans. Inst. Met. Finish., 2018, 96(1), p 52–56. https://doi.org/10.1080/00202967.2018.1403161

    Article  CAS  Google Scholar 

  14. Y. Wang et al., Influence of Pretreatments on Physicochemical Properties of Ni-P Coatings Electrodeposited on Aluminum Alloy, Mater Des, 2021, 197, p 109233. https://doi.org/10.1016/J.MATDES.2020.109233

    Article  CAS  Google Scholar 

  15. A. Warshawsky, C.L. Voycheck, W.T. Ferrar, and D.F. O’Brien, Metalization of Lipid Vesicles via Electroless Plating, J Am Chem Soc, 1988, 110(1), p 288–289. https://doi.org/10.1021/ja00209a046

    Article  Google Scholar 

  16. X.M. Chen, G.Y. Li, and J.S. Lian, Deposition of Electroless Ni-P/Ni-W-P Duplex Coatings on AZ91D Magnesium Alloy, Trans. Nonferrous Metals Soc. China, 2008, 18, p s323–s328. https://doi.org/10.1016/s1003-6326(10)60225-7

    Article  CAS  Google Scholar 

  17. G. Lu and G. Zangari, Study of the Electroless Deposition Process of Ni-P-Based Ternary Alloys, J. Electrochem. Soc., 2003, 150(11), p C777. https://doi.org/10.1149/1.1614799

    Article  CAS  Google Scholar 

  18. A. Biswas, S.K. Das, and P. Sahoo, Investigation of the Tribological Behavior of Electroless Ni-W-P Coating Pre and Post Phase Transformation Regime, Mater. Res. Express, 2019, 6(9), p 0965c1. https://doi.org/10.1088/2053-1591/AB33BD

    Article  CAS  Google Scholar 

  19. K.H. Krishnan, S. John, K.N. Srinivasan, J. Praveen, M. Ganesan, and P.M. Kavimani, An Overall Aspect of Electroless Ni-P Depositions–A Review Article, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2006, 37(6), p 1917–1926. https://doi.org/10.1007/s11661-006-0134-7

    Article  Google Scholar 

  20. H. Liu, H.L. Yao, G.E. Thompson, Z. Liu, and G. Harrison, Correlation Between Structure and Properties of Annealed Electroless Ni-W-P Coatings, Surf. Eng., 2015, 31(6), p 412–419. https://doi.org/10.1179/1743294414Y.0000000422

    Article  CAS  Google Scholar 

  21. A. Mukhopadhyay and S. Sahoo, A Grey-Fuzzy Based Approach for the Optimization of Corrosion Resistance of Rebars Coated with Ternary Electroless Nickel Coatings, J. Soft Comput. Civ. Eng., 2022, 6(2), p 107–127. https://doi.org/10.22115/SCCE.2022.326903.1401

    Article  Google Scholar 

  22. A. Mukhopadhyay and S. Sahoo, Improving Corrosion Resistance of Reinforcement Steel Rebars Exposed to Sulphate Attack by the Use of Electroless Nickel Coatings, Eur. J. Environ. Civ. Eng., 2021, 26(11), p 5180–5195. https://doi.org/10.1080/19648189.2021.1886177

    Article  Google Scholar 

  23. W. Wang, X. Jü, C. Xu, W. Zhang, N. Mitsuzaki, and Z. Chen, Study on Electroless Plating Ni-W-P Ternary Alloy with High Tungsten from Compound Complexant Bath, J. Mater. Eng. Perform., 2020, 29(12), p 8213–8220. https://doi.org/10.1007/S11665-020-05312-9

    Article  CAS  Google Scholar 

  24. M. Uysal, Electroless Codeposition of Ni-P Composite Coatings: Effects of Graphene and TiO2 on the Morphology, Corrosion, and Tribological Properties, Metall. Mater. Trans. A, 2019, 50(5), p 2331–2341. https://doi.org/10.1007/S11661-019-05161-9

    Article  CAS  Google Scholar 

  25. I.R. Mafi and C. Dehghanian, Studying the Effects of the Addition of TiN Nanoparticles to Ni-P Electroless Coatings, Appl. Surf. Sci., 2011, 258(5), p 1876–1880. https://doi.org/10.1016/j.apsusc.2011.10.095

    Article  CAS  Google Scholar 

  26. T.R. Tamilarasan, R. Rajendran, G. Rajagopal, and J. Sudagar, Effect of Surfactants on the Coating Properties and Corrosion Behaviour of Ni-P-Nano-TiO2 Coatings, Surf. Coat. Technol., 2015, 276, p 320–326. https://doi.org/10.1016/j.surfcoat.2015.07.008

    Article  CAS  Google Scholar 

  27. Q. Zhao and Y. Liu, Electroless Ni-Cu-P-PTFE Composite Coatings and their Anticorrosion Properties, Surf. Coat. Technol., 2005, 200(7), p 2510–2514. https://doi.org/10.1016/J.SURFCOAT.2004.06.011

    Article  CAS  Google Scholar 

  28. T.C. Chou, T.G. Nieh, S.D. McAdams, and G.M. Pharr, Microstructures and Mechanical Properties of Thin Films of Aluminum Oxide, Scripta Metall. Mater., 1991, 25(10), p 2203–2208. https://doi.org/10.1016/0956-716X(91)90001-H

    Article  CAS  Google Scholar 

  29. H. Gül, F. Kiliç, S. Aslan, A. Alp, and H. Akbulut, Characteristics of Electro-Co-Deposited Ni–Al2O3 Nano-Particle Reinforced Metal Matrix Composite (MMC) Coatings, Wear, 2009, 267(5–8), p 976–990. https://doi.org/10.1016/J.WEAR.2008.12.022

    Article  Google Scholar 

  30. S. Alirezaei, S.M. Monirvaghefi, M. Salehi, and A. Saatchi, Wear Behavior of Ni–P and Ni–P–Al2O3 Electroless Coatings, Wear, 2007, 262(7–8), p 978–985. https://doi.org/10.1016/J.WEAR.2006.10.013

    Article  CAS  Google Scholar 

  31. D. Mohanty, T.K. Barman, and P. Sahoo, Effect of İncorporation of Nano-Alumina on Tribo-Mechanical Behavior of Electroless Ni-B Coatings, J. Tribol., 2021, 30, p 24–43.

    Google Scholar 

  32. D. Mohanty, T.K. Barman, and P. Sahoo, “Effect of Nano Alumina Reinforcements on the Tribological Behavior of Electroless Nickel-Phosphorus Coatings,” Lecture Notes in Mechanical Engineering, https://doi.org/10.1007/978-981-19-3266-3_17/COVER.

  33. Ş Ürdem, E. Duru, H. Algül, M. Uysal, and H. Akbulut, Evaluation of High Temperature Tribological Behavior of Electroless Deposited NiB–Al2O3 Coating, Wear, 2021, 482–483, p 203960. https://doi.org/10.1016/J.WEAR.2021.203960

    Article  Google Scholar 

  34. H. Simunkova, P. Pessenda-Garcia, J. Wosik, P. Angerer, H. Kronberger, and G.E. Nauer, The Fundamentals of Nano- and Submicro-Scaled Ceramic Particles İncorporation into Electrodeposited Nickel Layers: Zeta Potential Measurements, Surf. Coat. Technol., 2009, 203(13), p 1806–1814. https://doi.org/10.1016/J.SURFCOAT.2008.12.031

    Article  CAS  Google Scholar 

  35. K. Murakami, M. Hino, M. Ushio, D. Yokomizo, and T. Kanadani, Formation of Zincate Films on Binary Aluminum Alloys and Adhesion of Electroless Nickel-Phosphorus Plated Films, Mater. Trans., 2013, 54(2), p 199–206. https://doi.org/10.2320/MATERTRANS.L-M2012830

    Article  CAS  Google Scholar 

  36. T. Note, “Zeta potential: An Introduction in 30 minutes,” Zetasizer Nano Serles Technical Note. MRK654–01, 2011, 2,1–6

  37. R. Hu et al., Deposition Process and Properties of Electroless Ni-P-Al2O3 Composite Coatings on Magnesium Alloy, Nanoscale Res. Lett., 2018, 13(1), p 1–8. https://doi.org/10.1186/S11671-018-2608-0/FIGURES/7

    Article  Google Scholar 

  38. T. Radu, M. Vlad, T. Radu, M. Vlad, F. Potecaşu, and G.G. Istrate, Preparation and Characterization of Electroless Ni-P-Al2O3 Nanocomposite Coatings Investigation of Advanced Functional Materials using Atomic and Nuclear Analytical Techniques and İmaging Microscopy View Project Preparatıon And Characterızatıon of Electroless Ni-P-Al2O3 Nanocomposıte Coatıngs, Digest J. Nanomater. Biostruct., 2015, 10(3), p 1055–1065.

    Google Scholar 

  39. A. Akyol, H. Algul, M. Uysal, H. Akbulut, and A. Alp, A Novel Approach for Wear and Corrosion Resistance in the Electroless Ni-P-W Alloy with CNFs Co-Depositions, Appl Surf Sci, 2018, 453, p 482–492. https://doi.org/10.1016/J.APSUSC.2018.05.152

    Article  CAS  Google Scholar 

  40. D. Liu, Y. Yan, K. Lee, and J. Yu, Effect of Surfactant on the Alumina Dispersion and Corrosion Behavior of Electroless Ni<span class=’icomoon’>?</span>P<span class=’icomoon’>?</span>Al2O3 Composite Coatings, Mater. Corros., 2009, 60(9), p 690–694. https://doi.org/10.1002/MACO.200805170

    Article  CAS  Google Scholar 

  41. F. Kiliç, H. Gül, S. Aslan, A. Alp, and H. Akbulut, Effect of CTAB Concentration in the Electrolyte on the Tribological Properties of Nanoparticle SiC Reinforced Ni Metal Matrix Composite (MMC) Coatings Produced by Electrodeposition, Colloids Surf. A Physicochem. Eng. Asp, 2013, 419, p 53–60. https://doi.org/10.1016/J.COLSURFA.2012.11.048

    Article  Google Scholar 

  42. H. Gül, M. Uysal, H. Akbulut, and A. Alp, Effect of PC Electrodeposition on the Structure and Tribological Behavior of Ni-Al2O3 Nanocomposite Coatings, Surf. Coat. Technol., 2014, 258, p 1202–1211. https://doi.org/10.1016/J.SURFCOAT.2014.07.002

    Article  Google Scholar 

  43. M.U. Rana et al., Measurement of Exchange İnteraction in Ti-Substituted Ni-Ferrites, Solid State Commun., 2001, 121(1), p 51–54. https://doi.org/10.1016/S0038-1098(01)00442-2

    Article  Google Scholar 

  44. A.L. Patterson, The Scherrer Formula for X-Ray Particle Size Determination, Phys. Rev., 1939, 56(10), p 978. https://doi.org/10.1103/PhysRev.56.978

    Article  CAS  Google Scholar 

  45. S. Alirezaei, S.M. Monirvaghefi, M. Salehi, and A. Saatchi, Effect of Alumina Content on Surface Morphology and Hardness of Ni-P-Al2O3(α) Electroless Composite Coatings, Surf. Coat. Technol., 2004, 184(2–3), p 170–175. https://doi.org/10.1016/J.SURFCOAT.2003.11.013

    Article  CAS  Google Scholar 

  46. G. Wu, N. Li, D. Zhou, and K. Mitsuo, Electrodeposited Co-Ni-Al2O3 Composite Coatings, Surf. Coat. Technol., 2004, 176(2), p 157–164. https://doi.org/10.1016/S0257-8972(03)00739-4

    Article  CAS  Google Scholar 

  47. G.P. Ram, S. Karthikeyan, P.E. Nicholas, and A.S. Sofia, Dry Sliding Wear Behavior of Electroless NIP and NIP-Al2O3 Composite Coatings, Mater. Today Proc., 2021, 37(2), p 2001–2009. https://doi.org/10.1016/J.MATPR.2020.07.495

    Article  Google Scholar 

  48. T. Yokobori, Physics of strength and plasticity, M.I.T. Press, Cambridge, 1969.

    Google Scholar 

  49. D.A. Smith, Wear and Friction Analysis of Thin Coatings, Silcotek 112 Benner Circle Bellefonte, PA 16823

  50. F. Delaunois and P. Lienard, Heat Treatments for Electroless Nickel-Boron Plating on Aluminium Alloys, Surf. Coat. Technol., 2002, 160(2–3), p 239–248. https://doi.org/10.1016/S0257-8972(02)00415-2

    Article  CAS  Google Scholar 

  51. F. Delaunois, J.P. Petitjean, P. Lienard, and M. Jacob-Duliere, Autocatalytic Electroless Nickel-Boron Plating on Light Alloys, Surf. Coat. Technol., 2000, 124(2–3), p 201–209. https://doi.org/10.1016/S0257-8972(99)00621-0

    Article  CAS  Google Scholar 

  52. J. Sudagar, J. Lian, and W. Sha, Electroless Nickel, Alloy, Composite and Nano Coatings–A Critical Review, J. Alloys Compd., 2013, 571, p 183–204. https://doi.org/10.1016/j.jallcom.2013.03.107

    Article  CAS  Google Scholar 

  53. F.H. Stott, The Role of Oxidation in the Wear of Alloys, Tribol Int, 1998, 31(1–3), p 61–71. https://doi.org/10.1016/S0301-679X(98)00008-5

    Article  CAS  Google Scholar 

  54. S. Qi, X. Li, and H. Dong, Reduced Friction and Wear of Electro-Brush Plated Nickel Composite Coatings Reinforced by Graphene Oxide, Wear, 2019, 426–427, p 228–238. https://doi.org/10.1016/J.WEAR.2018.12.069

    Article  Google Scholar 

  55. M. Uysal, H. Algül, E. Duru, Y. Kahraman, A. Alp, and H. Akbulut, Tribological Properties of Ni–W–TiO2–GO Composites Produced by Ultrasonically-Assisted Pulse Electro Co–Deposition, Surf. Coat. Technol., 2021, 410, p 126942. https://doi.org/10.1016/J.SURFCOAT.2021.126942

    Article  CAS  Google Scholar 

  56. J.D. Yong, B.H. Koo, H.I. Hawang, S.K. Seo, and J.K. Park, Effect of Ultrasonic Process of Electroless Ni-P-Al2O3 Composite Coatings, J. Korean Inst. Surf. Eng., 2021, 54(6), p 315–323. https://doi.org/10.5695/JKISE.2021.54.6.315

    Article  Google Scholar 

  57. Q. Feng et al., Investigation on the Corrosion and Oxidation Resistance of Ni–Al2O3 Nano-Composite Coatings Prepared by Sediment Co-Deposition, Surf. Coat. Technol., 2008, 202(17), p 4137–4144. https://doi.org/10.1016/J.SURFCOAT.2008.03.001

    Article  CAS  Google Scholar 

  58. S. Dehgahi, R. Amini, and M. Alizadeh, Corrosion, Passivation and Wear Behaviors of Electrodeposited Ni–Al2O3–SiC Nano-Composite Coatings, Surf. Coat. Technol., 2016, 304, p 502–511. https://doi.org/10.1016/J.SURFCOAT.2016.07.007

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Sakarya University of Applied Sciences Scientific Research Projects (BAP) Coordinatorship (Project No: 2021-01-05-052) for the financially supporting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harun Gul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gul, H., Usta, İ. Effect of Alumina Concentration on Morphology, Wear, and Corrosion: Electroless Ni-W-P/Al2O3 Composite Coatings on Aluminum Surfaces. J. of Materi Eng and Perform 32, 6107–6122 (2023). https://doi.org/10.1007/s11665-023-08184-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08184-x

Keywords

Navigation