Skip to main content

Advertisement

Log in

On the Strengthening Mechanisms and Interfacial Characteristics of TiB2/Hypoeutectic Al-Si Ceramic Composites

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

xTiB2/Al-9Si composites were fabricated in this study using the mixed salt reaction method. With increasing TiB2 particle content, the size of the primary α-Al grains decreased correspondingly. The best refinement of the primary α-Al grains was achieved with the addition of 4 wt.% TiB2 particles, which resulted in the highest yield and tensile strength (172.3 and 255.3 MPa, respectively) and an elongation of 1.6%. In order to explore the TiB2(\(\overline{1 } 1 0 0\))/α-Al(\(\overline{1} \overline{1} 1\)) interfacial structure and to understand the potential of the heterogeneous nucleation of α-Al grains on TiB2 particles, the ideal work of adhesion (Wad), electronic structure and bonding properties of the TiB2(\(\overline{1} 1 0 0\))/α-Al(\(\overline{1} \overline{1} 1\)) interface were investigated utilizing density functional theory-based first-principles calculations. The calculation results demonstrated that the stacking model with a B-terminated interface had a relaxed interfacial distance of 2.093 Å, the work of adhesion of 1.24 J/m2 and the interfacial energy of 0.09 J/m2, thereby revealing the stability of this model. The calculated electron bonding indicated that strong and stable Al-B covalent bonds were generated at the interface, revealing the ability of α-Al grains to heterogeneously nucleate on TiB2 grains and the positive contribution of TiB2 particles to the grain refinement and strengthening mechanism of the Al-Si alloys. This study provides references for the in-depth study of ceramic particle-reinforced aluminum matrix composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. Zhang, L.K. Huang, B. Zhang, Y.Z. Chen, S.Y. Duan, G. Liu, C.L. Yang, and F. Liu, Enhanced Strength and Ductility of A356 Alloy Due to Composite Effect of Near-Rapid Solidification and Thermo-Mechanical Treatment, Mater. Sci. Eng., A, 2019, 753, p 168–178.

    Article  CAS  Google Scholar 

  2. K. Hu, X. Ma, T. Gao, Q. Xu, Z. Qian, Y. Wu, and X. Liu, Morphological Transformation Mechanism of Eutectic Si Phases in Al–Si Alloys by Nano-AlNp, J. Alloy. Compd., 2018, 765, p 113–120.

    Article  CAS  Google Scholar 

  3. Q. Li, F. Qiu, B.-X. Dong, X. Gao, S.-L. Shu, H.-Y. Yang, and Q.-C. Jiang, Processing, Multiscale Microstructure Refinement and Mechanical Property Enhancement of Hypoeutectic Al–Si Alloys via In Situ Bimodal-Sized TiB2 Particles, Mater. Sci. Eng., A, 2020, 777, 139081.

    Article  CAS  Google Scholar 

  4. V.K. Pandey, B.P. Patel, and S. Guruprasad, Role of Ceramic Particulate Reinforcements on Mechanical Properties and Fracture Behavior of Aluminum - Based Composites, Mater. Sci. Eng., A, 2019, 745, p 252–264.

    Article  CAS  Google Scholar 

  5. C.-S. Kim, K. Cho, M.H. Manjili, and M. Nezafati, Mechanical Performance of Particulate-Reinforced Al Metal-Matrix Composites (MMCs) and Al Metal-Matrix Nano-Composites (MMNCs), J. Mater. Sci., 2017, 52(23), p 13319–13349.

    Article  CAS  Google Scholar 

  6. P. Nash, and N. Zhao, 1000 at 1000: Particulate-Reinforced Metal Matrix Composites, J. Mater. Sci., 2020, 55(34), p 16059–16062.

    Article  CAS  Google Scholar 

  7. D. Ravnikar, N.B. Dahotre, and J. Grum, Laser Coating of Aluminum Alloy EN AW 6082–T651 with TiB2 and TiC: Microstructure and Mechanical Properties, Appl. Surf. Sci., 2013, 282, p 914–922.

    Article  CAS  Google Scholar 

  8. H. Yi, N. Ma, Y. Zhang, X. Li, and H. Wang, Effective Elastic Moduli of Al–Si Composites Reinforced In Situ with TiB2 Particles, Scripta Mater., 2006, 54(6), p 1093–1097.

    Article  CAS  Google Scholar 

  9. H. Tong, F. Qiu, R. Zuo, P. Shen, X. Cong, J. Liu, H. Yang, and Q. Jiang, RETRACTED: The Effect and Mechanism of Alloying Elements on Al/SiC Interfacial Reaction in Al Melt, Appl. Surf. Sci., 2020, 501, 144265.

    Article  CAS  Google Scholar 

  10. M.H. Sohi, S.M.H. Hojjatzadeh, S.S. Moosavifar, and S. Heshmati-Manesh, Liquid Phase Surface Melting of AA8011 Aluminum Alloy by Addition of Al/Al2O3 Nano-Composite Powders Synthesized by High-Energy Milling, Appl. Surf. Sci., 2014, 313, p 76–84.

    Article  CAS  Google Scholar 

  11. Z.J. Wang, S. Liu, Z.X. Qiu, H.Y. Sun, and W.C. Liu, First-Principles Calculations on the Interface of the Al/TiC Aluminum Matrix Composites, Appl. Surf. Sci., 2020, 505, 144502.

    Article  CAS  Google Scholar 

  12. Z. Fan, Y. Wang, Y. Zhang, T. Qin, X.R. Zhou, G.E. Thompson, T. Pennycook, and T. Hashimoto, Grain Refining Mechanism in the Al/Al–Ti–B System, Acta Mater., 2015, 84, p 292–304.

    Article  CAS  Google Scholar 

  13. M.K. Hullur, D.M. Goudar, K. Venkateshwaralu, S.A. Kori, Sliding Wear Behaviour of In Situ TiB2 Reinforced Hypoeutectic Al-Si Alloy Composites, International Journal of Metalcasting, (2022)

  14. M. Wang, D. Chen, Z. Chen, Y. Wu, F. Wang, N. Ma, and H. Wang, Mechanical Properties of in-situ TiB2/A356 Composites, Mater. Sci. Eng., A, 2014, 590, p 246–254.

    Article  CAS  Google Scholar 

  15. R. Liu, X. Yin, K. Feng, and R. Xu, First-Principles Calculations on Mg/TiB2 Interfaces, Comput. Mater. Sci., 2018, 149, p 373–378.

    Article  CAS  Google Scholar 

  16. A.L. Greer, Overview: Application of Heterogeneous Nucleation in Grain-Refining of Metals, J Chem Phys, 2016, 145(21), 211704.

    Article  CAS  PubMed  Google Scholar 

  17. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, and M.C. Payne, First principles methods using, CASTEP, 2005, 220(5–6), p 567–570.

    CAS  Google Scholar 

  18. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais, Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation, Phys. Rev. B, 1992, 46(11), p 6671–6687.

    Article  CAS  Google Scholar 

  19. J.P. Perdew, K. Burke, and Y. Wang, Generalized Gradient Approximation for the Exchange-Correlation Hole of a Many-Electron System, Phys. Rev. B, 1996, 54(23), p 16533–16539.

    Article  CAS  Google Scholar 

  20. S. Saib, and N. Bouarissa, Electronic Properties of GaN at High-Pressure from Local Density and Generalized Gradient Approximations, Comput. Mater. Sci., 2006, 37(4), p 613–617.

    Article  CAS  Google Scholar 

  21. B. Liu, and J. Yang, Mg on Adhesion of Al(111)/3C-SiC(111) Interfaces from First Principles Study, J. Alloy. Compd., 2019, 791, p 530–539.

    Article  CAS  Google Scholar 

  22. S. Otani, and Y. Ishizawa, Preparation of TiB2 Single Crystals by the Floating Zone Method, J. Cryst. Growth, 1994, 140(3), p 451–453.

    Article  CAS  Google Scholar 

  23. Y.H. Duan, Y. Sun, Z.Z. Guo, M.J. Peng, P.X. Zhu, and J.H. He, Elastic Constants of AlB2-Type Compounds from First-Principles Calculations, Comput. Mater. Sci., 2012, 51(1), p 112–116.

    Article  CAS  Google Scholar 

  24. S.-L. Li, P. Hu, T. Liu, Q.-S. Shi, X.-M. Dang, B.-l. Hu, W. Zhang, K.-S. Wang, Formation Mechanism of Coronal Composite Secondary Phase in Titanium-Zirconium-Molybdenum Alloy, Mater. Character., 193, (2022)

  25. P. Xiao, Y. Gao, F. Xu, S. Yang, B. Li, Y. Li, Z. Huang, and Q. Zheng, An Investigation on Grain Refinement Mechanism of TiB2 Particulate Reinforced AZ91 Composites and Its Effect on Mechanical Properties, J. Alloy. Compd., 2019, 780, p 237–244.

    Article  CAS  Google Scholar 

  26. Y. Wang, M. Xia, Z. Fan, X. Zhou, and G.E. Thompson, The Effect of Al8Mn5 Intermetallic Particles on Grain Size of as-cast Mg–Al–Zn AZ91D Alloy, Intermetallics, 2010, 18(8), p 1683–1689.

    Article  CAS  Google Scholar 

  27. K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, and J.M. Schoenung, Mechanical Behavior and Strengthening Mechanisms in Ultrafine Grain Precipitation-Strengthened Aluminum Alloy, Acta Mater., 2014, 62, p 141–155.

    Article  CAS  Google Scholar 

  28. K. Zhao, Z. Duan, J. Liu, G. Kang, and L. An, Strengthening Mechanisms of 15 vol.% Al2O3 Nanoparticles Reinforced Aluminum Matrix Nanocomposite Fabricated by High Energy Ball Milling and Vacuum Hot Pressing, Acta Metall. Sinica (Engl. Lett.), 2021, 35(6), p 915–921.

    Article  Google Scholar 

  29. K. Luo, S. Liu, H. Xiong, Y. Zhang, C. Kong, and H. Yu, Mechanical Properties and Strengthening Mechanism of Aluminum Matrix Composites Reinforced by High-entropy Alloy Particles, Met. Mater. Int., 2022, 28(11), p 2811–2821.

    Article  CAS  Google Scholar 

  30. C. Goh, J. Wei, L. Lee, and M. Gupta, Properties and Deformation Behaviour of Mg–Y2O3 Nanocomposites, Acta Mater., 2007, 55(15), p 5115–5121.

    Article  CAS  Google Scholar 

  31. S.K. Sahoo, B.N. Sahoo, S.K. Panigrahi, Effect of In-Situ Sub-Micron sized TiB2 Reinforcement on Microstructure and Mechanical Properties in ZE41 Magnesium Matrix Composites, Mater. Sci. Eng.: A, 773, (2020)

  32. O. Matvienko, O. Daneyko, T. Kovalevskaya, A. Khrustalyov, I. Zhukov, A. Vorozhtsov, Investigation of Stresses Induced Due to the Mismatch of the Coefficients of Thermal Expansion of the Matrix and the Strengthening Particle in Aluminum-Based Composites, Metals, 11(2), (2021)

  33. K. Edalati, D. Akama, A. Nishio, S. Lee, Y. Yonenaga, J.M. Cubero-Sesin, and Z. Horita, Influence of Dislocation–Solute Atom Interactions and Stacking Fault Energy on Grain Size of Single-Phase Alloys After Severe Plastic Deformation Using High-Pressure Torsion, Acta Mater., 2014, 69, p 68–77.

    Article  CAS  Google Scholar 

  34. T. Zhang, K. Feng, Z. Li, and H. Kokawa, Effects of In-Situ Synthesized TiB2 on Crystallographic Orientation, Grain Size and Nanohardness of AA6061 Alloy by Laser Surface Alloying, Mater. Lett., 2019, 253, p 213–217.

    Article  CAS  Google Scholar 

  35. Z. Zhang, and D.L. Chen, Contribution of Orowan Strengthening Effect in Particulate-Reinforced Metal Matrix Nanocomposites, Mater. Sci. Eng., A, 2008, 483–484, p 148–152.

    Article  Google Scholar 

  36. S. Amirkhanlou, S. Ji, Y. Zhang, D. Watson, and Z. Fan, High Modulus Al Si Mg Cu/Mg2Si TiB2 Hybrid Nanocomposite: Microstructural Characteristics and Micromechanics-Based Analysis, J. Alloy. Compd., 2017, 694, p 313–324.

    Article  CAS  Google Scholar 

  37. B.L.J.M.T. Bramfitt, The Effect of Carbide and Nitride Additions on the Heterogeneous Nucleation Behavior of Liquid Iron, 1(7), 1987–1995 (1970)

  38. J. Zhang, Q. Xu, Y. Hu, C. Mao, X. Zhou, X. Lu, M. Zhang, Y. Tong, K. Tang, and P. Peng, Interfacial Bonding Mechanism and Adhesive Transfer of Brazed Diamond with Ni-Based Filler Alloy: First-Principles and Experimental Perspective, Carbon, 2019, 153, p 104–115.

    Article  CAS  Google Scholar 

  39. H. Yan, W. Guo, T. Luan, X. Ma, G. Xu, X. Leng, W. Zhao, J. Yan, Strengthening Mechanism of Al/Sn Interfaces: Study from Experiments and First-Principles Calculation, Mater. Des., 212, (2021)

  40. K. Lu, C. Shen, Y. He, S. Huang, Y. Ba, Effect of Solute Elements (Cr, Mo, Fe, Co) on the Adhesion Properties of WC/Ni-Based Binder Interface: A First-Principles Study, Int. J. Refract. Metals Hard Mater., 98, (2021)

  41. X. Song, Y. Han, X. Wang, W. Liu, J. Wu, and H. Cui, First-Principles Study of Adhesion Strength and Stability of the TiB2/TiC Interface in Composite Materials, Ceram. Int., 2018, 44(2), p 1756–1763.

    Article  CAS  Google Scholar 

  42. H.-H. Xiong, H.-N. Zhang, and J.-H. Dong, Adhesion Strength and Stability of TiB2/TiC Interface in Composite Coatings by First Principles Calculation, Comput. Mater. Sci., 2017, 127, p 244–250.

    Article  CAS  Google Scholar 

  43. K. Zhang, and Y. Zhan, Adhesion Strength and Stability of Cu(111)/TiC(111) Interface in Composite Coatings by First Principles Study, Vacuum, 2019, 165, p 215–222.

    Article  CAS  Google Scholar 

  44. Z. Li, J. Feng, Z. Wu, M. Pang, D. Liu, W. Yang, Y. Zhan, The Stability and Electronic Structure of Cu(200)/AuCu(200) Interface: An Insight from First-Principle Calculation, Materials (Basel), 15(4), (2022)

  45. Y. Xu, S. Wei, Z. Han, L. Xu, First Principles Calculations on Al/TiB2 Interfaces, Indian J. Phys., 1–8 (2022)

  46. T. Yang, X. Chen, W. Li, X. Han, and P. Liu, First-Principles Calculations to Investigate the Interfacial Energy and Electronic Properties of Mg/AlN Interface, J. Phys. Chem. Solids, 2022, 167, 110705.

    Article  CAS  Google Scholar 

  47. Z. Shi, S. Liu, Y. Zhou, and Q. Yang, First-Principles Calculation on the Relationships of h-WC/γ-Fe Interface, J. Phys. Chem. Solids, 2018, 123, p 11–18.

    Article  CAS  Google Scholar 

  48. F. Vincenzo, and M. Methfessel, Extracting Convergent Surface Energies from Slab Calculations, J. Phys.: Condens. Matter, 1996, 8(36), p 6525.

    Google Scholar 

  49. Y. Sun, L. Bao, Z. Kong, and Y. Duan, Adhesion Strength, Stability and Electronic Properties of α-Mg/Mg2Pb Interface from First-Principles Calculation, J. Mater. Res., 2022, 37(11), p 1859–1867.

    Article  CAS  Google Scholar 

  50. N. Wang, L. Dong, C.K. Gao, and D.J. Li, A Study of Structure, Energy and Electronic Properties of TiB2/c-BN Interface by First Principles Calculations, Opt. Mater., 2014, 36(8), p 1459–1462.

    Article  CAS  Google Scholar 

  51. Z. Yu, W. Guo, S. Yang, H. Xue, and X. Zhang, Study on the Bonding Properties of ZrB2 (0001)/ZrC (111) Interface via First-Principles Calculations, Mater. Chem. Phys., 2021, 269, 124755.

    Article  CAS  Google Scholar 

  52. N. Eustathopoulos, L. Coudurier, J.C. Joud, and P. Desré, Tension Interfaciale Solide-Liquide des Systémes Al-Sn, Al-In et Al-Sn-In, J. Cryst. Growth, 1976, 33(1), p 105–115.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding for this research from National Natural Science Foundation of China (52065032), Key Research and Development Project of Yunnan Province and International Science and Technology Cooperation Project (202103AF140004), Basic research project of Yunnan Province (202101AT070123), Science Foundation of Kunming University of Science and Technology (202202AG050011-2), Ten Thousand Talent Program of Yunnan Province (YNWR-QNBJ-2019-106). This work was also supported by the National and Local Joint Engineering Laboratory of Advanced Metal Solidification Forming and Equipment Technology, and Analytic and Testing Research Centre of Yunnan, Kunming University of Science and Technology, Kunming, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhentao Yuan, Xiao Wang or Bin Yang.

Ethics declarations

Conflict of interests

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Zhang, X., Xu, B. et al. On the Strengthening Mechanisms and Interfacial Characteristics of TiB2/Hypoeutectic Al-Si Ceramic Composites. J. of Materi Eng and Perform 33, 2623–2634 (2024). https://doi.org/10.1007/s11665-023-08162-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08162-3

Keywords

Navigation