Skip to main content

Advertisement

Log in

Influence of Silicon Carbide and Graphite Reinforcements and T6 Aging Heat Treatment on the Fatigue Characteristics of AZ91D Magnesium Alloy

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study evaluated the high-cycle fatigue strength of AZ91D alloy and AZ91D-5SiC-1Gr (wt.%) hybrid magnesium composite. The samples were produced through the stir casting process, and properties were studied in as-cast and T6 aging heat-treated conditions. Microstructural characterizations, density, porosity, tensile properties, and high-cycle fatigue strength of produced alloy and hybrid composite were evaluated. The maximum obtained ultimate tensile strength, yield strength (0.2%), and ductility for T6-heat-treated hybrid composite were 176, 56.5 MPa, and 8.1%, respectively, and density of 1.855 g/cc. Stress-controlled, fully reversed high-cycle fatigue test was performed on the samples subjected to axial load and rotary bending load fatigue test. Fatigue results indicated that produced hybrid composite possessed higher cycle fatigue strength than the parent AZ91D alloy. AZ91D-5SiC-1Gr (wt.%) (T6) sample reported 55,434 cycles to failure at 28.25 MPa stress amplitude which is 4.33 times higher than as-cast AZ91D alloy. Maximum rotary bending load fatigue life of 101,916 cycles was obtained for T6-hybrid composite samples at 18.2 MPa stress amplitude. The reliability of fatigue strength has been studied through the R–S–N method, and results indicate that the fatigue life of the T6-hybrid composite possesses 81,377 cycles at 99% reliability and 98,627 cycles at 50% reliability. Hence, the addition of SiC and graphite and aging heat treatment at 100 °C enhances the tensile and fatigue strength of the parent AZ91D alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. A.C. Serrenho, J.B. Norman, and J.M. Allwood, The Impact of Reducing Car Weight on Global Emissions: The Future Fleet in Great Britain, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 2017, 375, p 201.

    Google Scholar 

  2. T.B. Abbott, Magnesium: Industrial and Research Developments Over the Last 15 Years, Corrosion, 2015, 71(2), p 120–127.

    Article  CAS  Google Scholar 

  3. P. Emadi and C. Ravindran, The Influence of High Temperature Ultrasonic Processing Time on the Microstructure and Mechanical Properties AZ91E Magnesium Alloy, J. Mater. Eng. Perform., 2021, 30, p 1188–1199.

    Article  CAS  Google Scholar 

  4. S.J. Huang, M. Subramani, A.N. Ali, D.B. Alemayehu, J.N. Aoh, and P.C. Lin, The Effect of Micro-SiCp Content on the Tensile and Fatigue Behavior of AZ61 Magnesium Alloy Matrix Composites, Int. J. Met., 2020, 15, p 780–793.

    Google Scholar 

  5. C. He, Y. Liu, J. Li, K. Yang, Q. Wang, and Q. Chen, Very-High-Cycle Fatigue Crack Initiation and Propagation Behaviours of Magnesium Alloy ZK60, Mater. Sci. Technol., 2018, 34(6), p 639–647.

    Article  CAS  Google Scholar 

  6. C.R. Gagg and P.R. Lewis, In-service Fatigue Failure of Engineered Products and Structures—Case Study Review, Eng. Fail. Anal., 2009, 16(6), p 1775–1793.

    Article  CAS  Google Scholar 

  7. S. Bagherifard et al., Effects of Nanofeatures Induced by Severe Shot Peening (SSP) on Mechanical, Corrosion and Cytocompatibility Properties of Magnesium alloy AZ31, Acta Biomater., 2018, 66, p 93–108.

    Article  CAS  PubMed  Google Scholar 

  8. K.U.K. Carsten Potzies, Fatigue of Magnesium Alloys, Adv. Eng. Mater., 2004, 6(5), p 281–289.

    Article  Google Scholar 

  9. A.H. Jabbari, H. Delavar, and M. Sedighi, High Cycle Fatigue Behavior of Magnesium Matrix Nanocomposite at Elevated Temperatures, Mech. Mater, 2020, 142, p 103278.

    Article  Google Scholar 

  10. Z. Li, A.A. Luo, Q. Wang, H. Zou, J. Dai, and L. Peng, Fatigue Characteristics of Sand-Cast AZ91D Magnesium Alloy, J. Magnes. Alloys, 2017, 5(1), p 1–12.

    Article  Google Scholar 

  11. D. Yu, D. Zhang, Y. Luo, J. Sun, J. Xu, and F. Pan, Microstructure Evolution during High Cycle Fatigue in Mg-6Zn-1Mn Alloy, Mater. Sci. Eng. A, 2016, 658, p 99–108.

    Article  CAS  Google Scholar 

  12. S. Wlodarski, D.Z. Avery, B.C. White, C.J.T. Mason, C. Cleek, M.B. Williams, P.G. Allison, and J.B. Jordon, Evaluation of Grain Refinement and Mechanical Properties of Additive Friction Stir Layer WELDING OF AZ31 MAGNESIUM ALLOY, J. Mater. Eng. Perform., 2021, 30, p 964–972.

    Article  CAS  Google Scholar 

  13. N. Babacan, E. Yurtkuran, A. Balci, M. Bieda-Niemiec, and A. Jarzębska, Effects of Non-isothermal Aging on Microstructure and Mechanical Properties of WE43 Alloy, J. Mater. Eng. Perform., 2021, 30(11), p 7909–7916.

    Article  CAS  Google Scholar 

  14. B.J. Wang, D.K. Xu, S.D. Wang, L.Y. Sheng, R.C. Zeng, and E.H. Han, Influence of solution treatment on the corrosion fatigue behavior of an as-forged Mg- Zn-Y-Zr alloy, Int. J. Fatigue, 2019, 120, p 46–55.

    Article  Google Scholar 

  15. Z. Li, Q. Wang, A.A. Luo, J. Dai, H. Zou, and L. Peng, Effect of Heat Treatment on Strain– Controlled Fatigue Behavior of Cast Mg–Nd–Zn–Zr Alloy, J. Mater. Sci. Technol., 2018, 34(11), p 2091–2099.

    Article  CAS  Google Scholar 

  16. M. Somasundaram and U. Narendra Kumar, Microstructural and Mechanical Properties of a Heat-Treated EV31A Magnesium Alloy Fabricated Using the Stir-Casting Process, Crystals, 2022, 2(8), p 1163.

    Article  Google Scholar 

  17. X.Z. Wang, Y.Q. Wang, C.B. Ni, Y.X. Fang, X. Yu, and P. Zhang, The Effect of T4 and T6 Heat Treatments for Dynamic Impact Behavior of Casting Mg-Gd-Based Alloys, Vacuum, 2022, 205, p 111450.

    Article  CAS  Google Scholar 

  18. D. Yu et al., High Cycle Fatigue Behavior of Extruded and Double-aged Mg-6Zn-1Mn Alloy, Mater. Sci. Eng. A, 2016, 662, p 1–8.

    Article  CAS  Google Scholar 

  19. S.J. Huang and A.N. Ali, Effects of Heat Treatment on the Microstructure and Microplastic Deformation Behavior of SiC Particles Reinforced AZ61 Magnesium Metal Matrix Composite, Mater. Sci. Eng. A, 2018, 711(August), p 670–682.

    Article  CAS  Google Scholar 

  20. X. Liu, S. Jia, and L. Nastac, Ultrasonic Cavitation-Assisted Molten Metal Processing of Cast a356-Nanocomposites, Int. J. Met., 2014, 8(3), p 51–57.

    CAS  Google Scholar 

  21. A.H. Jabbari and M. Sedighi, Investigation of Electromagnetic and Mechanical Stirring Sequence Effects on Production of Magnesium Matrix Nanocomposite, Int. J. Met., 2020, 14(2), p 489–504.

    CAS  Google Scholar 

  22. I. Aatthisugan, A. Razal Rose, and D. Selwyn Jebadurai, Mechanical and Wear Behaviour of AZ91D Magnesium Matrix Hybrid Composite Reinforced with Boron Carbide and Graphite, J. Magnes. Alloys, 2017, 5(1), p 20–25.

    Article  CAS  Google Scholar 

  23. A. Packia Antony Amalan, N.M. Sivaram, C. Bavatharani, D. Ragupathy, A Study on the Effect of Ageing Heat Treatment on Hardness, Tensile and Corrosion Behaviour of Stir-Cast AZ91D-5SiC-1Gr Hybrid Magnesium Composite, Int. J. Met., 2021.

  24. W.T. Huo, X. Lin, S. Yu, Z.T. Yu, W. Zhang, and Y.S. Zhang, Corrosion Behavior and Cytocompatibility of Nano-Grained AZ31 Mg Alloy, J. Mater. Sci., 2019, 54(5), p 4409–4422.

    Article  CAS  Google Scholar 

  25. M.E. Turan, Y. Sun, F. Aydin, H. Zengin, Y. Turen, and H. Ahlatci, Effects of Carbonaceous Reinforcements on Microstructure and Corrosion Properties of Magnesium Matrix Composites, Mater. Chem. Phys., 2018, 218(July), p 182–188.

    Article  CAS  Google Scholar 

  26. G. Wu, Y. Fan, H. Gao, C. Zhai, and Y.P. Zhu, The Effect of Ca and Rare Earth Elements on the Microstructure, Mechanical Properties and Corrosion Behavior of AZ91D, Mater. Sci. Eng. A, 2005, 408(1–2), p 255–263.

    Article  Google Scholar 

  27. A.K.S. Bankoti, A.K. Mondal, S. Kumar, and B.C. Ray, Individual and Combined Additions of Calcium and Antimony on Microstructure and Mechanical Properties of Squeeze-Cast, Mater. Sci. Eng. A, 2015, 626, p 186–194.

    Article  CAS  Google Scholar 

  28. P. Li, B. Tang, and E.G. Kandalova, Microstructure and Properties of AZ91D Alloy with Ca Additions, Mater. Lett., 2005, 59(6), p 671–675.

    Article  CAS  Google Scholar 

  29. S. Bansal and J.S. Saini, Mechanical and Wear Properties of SiC/Graphite Reinforced Al359 Alloy-Based Metal Matrix Composite, Def. Sci. J., 2015, 65(4), p 330–338.

    Article  CAS  Google Scholar 

  30. S. Aravindan, P.V. Rao, and K. Ponappa, Evaluation of Physical and Mechanical Properties of AZ91D/SiC Composites by Two Step Stir Casting Process, J. Magnes. Alloys, 2015, 3(1), p 52–62.

    Article  CAS  Google Scholar 

  31. K. Soorya Prakash, P. Balasundar, S. Nagaraja, P.M. Gopal, and V. Kavimani, Mechanical and Wear Behaviour of Mg-SiC-Gr Hybrid Composites, J. Magnes. Alloys, 2016, 4(3), p 197–206.

    Article  CAS  Google Scholar 

  32. J. Buha, Method of Heat Treating Magnesium Alloys, U.S. Pat., vol. US8,414,71, 2013.

  33. H.L.A. Hassan, Effects of Particulate Volume Fraction on Cyclic Stress Response and Fatigue Life of AZ91D Magnesium Alloy Metal Matrix Composites, Mater. Sci. Eng. A, 2014, 600, p 188–194.

    Article  CAS  Google Scholar 

  34. B. Stojanovic, M. Babic, S. Mitrovic, A. Vencl, N. Miloradovic, and M. Pantic, Tribological Characteristics of Aluminium Hybrid, J. Balk. Tribol. Assoc., 2013, 19(1), p 83–96.

    CAS  Google Scholar 

  35. L. Qi, L. Ju, J. Zhou, S. Li, T. Zhang, and W. Tian, Tensile and Fatigue Behavior of Carbon Fiber Reinforced Magnesium Composite Fabricated by Liquid–Solid Extrusion Following Vacuum Pressure Infiltration, J. Alloys Compd., 2017, 721, p 55–63.

    Article  CAS  Google Scholar 

  36. M.F. Ashby and D.R.H. Jones, Engineering Materials 1, 4th ed. Elsevier, Amsterdam, 2012.

    Google Scholar 

  37. Y.W. Bao, Y.C. Zhou, X.X. Bu, and Y. Qiu, Evaluating Elastic Modulus and Strength of Hard Coatings by Relative Method, Mater. Sci. Eng. A, 2007, 458(1–2), p 268–274.

    Article  Google Scholar 

  38. P. Ravindran, K. Manisekar, P. Narayanasamy, N. Selvakumar, and R. Narayanasamy, Application of Factorial Techniques to Study the Wear of Al Hybrid Composites with Graphite Addition, Mater. Des., 2012, 39, p 42–54.

    Article  CAS  Google Scholar 

  39. S. Suresha and B.K. Sridhara, Wear Characteristics of Hybrid Aluminium Matrix Composites Reinforced with Graphite and Silicon Carbide Particulates, Compos. Sci. Technol., 2010, 70(11), p 1652–1659.

    Article  CAS  Google Scholar 

  40. M. Preciado, P.M. Bravo, and D. Cardenas, Influence of Porosity in the Fatigue Behavior of the High-Pressure Die-Casting AZ91 Magnesium Alloys, J. Eng. Mater. Technol. Trans. ASME, 2016, 138(4), p 1–5.

    Article  Google Scholar 

  41. H. Mayer, M. Papakyriacou, B. Zettl, and S.E. Stanzl-Tschegg, Influence of Porosity on the Fatigue Limit of Die Cast Magnesium and Aluminium Alloys, Int. J. Fatigue, 2003, 25(3), p 245–256.

    Article  CAS  Google Scholar 

  42. S. Fintová and L. Kunz, Fatigue Properties of Magnesium Alloy AZ91 Processed by Severe Plastic Deformation, J. Mech. Behav. Biomed. Mater., 2015, 42, p 219–228.

    Article  PubMed  Google Scholar 

  43. Y.L. Xu, K. Zhang, L. Han, and M.F. Li, Analyses of P–S–N Curve and Fracture Morphology of Die-Casting Magnesium alloy AZ91D Containing Mischmetal, Appl. Mech. Mater., 2014, 467, p 103–107.

    Article  Google Scholar 

  44. M.V. Achutha, B.K. Sridhara, and A. Budan, Fatigue Life Estimation of Hybrid Aluminium Matrix Composites, Int. J. Des. Manuf. Technol., 2008, 2(1), p 14–21.

    Article  Google Scholar 

  45. H.J. Sutherland, P.S. Veers, The development of confidence limits for fatigue strength data, in ASME Wind Energy Symposium (2006), p. 63.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Packia Antony Amalan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Packia Antony Amalan, A., Sivaram, N.M. & Subramanya, R. Influence of Silicon Carbide and Graphite Reinforcements and T6 Aging Heat Treatment on the Fatigue Characteristics of AZ91D Magnesium Alloy. J. of Materi Eng and Perform 33, 2751–2767 (2024). https://doi.org/10.1007/s11665-023-08154-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08154-3

Keywords

Navigation