Skip to main content
Log in

Microstructure and Corrosion Resistance of Ni-Al Coating Prepared by Plasma Transferred Arc Technology

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The Ni-Al intermetallic compounds coating was prepared on Q235 steel plate through plasma transferred arc (PTA) process using different powder system compositions. The compositions included high-purity Ni: Al, NiBSi: Al and NiCrBSi: Al, with a Ni: Al ratio of 3:1. The phase composition, microstructure, morphology, and corrosion resistance of the coatings were analyzed. The results indicated that the microstructure of the coatings changed to hypoeutectic with the addition of alloying elements in the powder system. The coatings prepared with high-purity Ni powder had low hardness and poor corrosion resistance due to the coarse dendrite structures of Ni-Al intermetallic compounds. The coatings produced with NiBSi powder contained lamellar eutectic structures and had good corrosion resistance and high hardness, as the Ni3Al phase grew in the NiAl phase. The coating fabricated with NiCrBSi powder showed a high density of chrysanthemum-like eutectic structures alternately formed by Ni3Al and α-Cr, and had refined grain size, good corrosion resistance, and high hardness.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. M.A. Awotunde, O.O. Ayodele, A.O. Adegbenjo, A.M. Okoro, M.B. Shongwe, and P.A. Olubambi, Article NiAl Intermetallic Composites—a Review of Processing Methods, Reinforcements and Mechanical Properties, Int. J. Adv. Manuf. Technol., 2019, 104(5–8), p 1733–1747. https://doi.org/10.1007/s00170-019-03984-9s

    Article  Google Scholar 

  2. O. Ozdemir, S. Zeytin, and C. Bindal, Article Tribological Properties of Ni3Al Produced by Pressure-Assisted Volume Combustion Synthesis, Tribol. Int., 2012, 53, p 22–27. https://doi.org/10.1016/j.triboint.2012.04.001s

    Article  CAS  Google Scholar 

  3. J.T. Guo, L.Y. Sheng, Y. Xie, Z.X. Zhang, V.E. Ovcharenko, and H.Q. Ye, Article Microstructure and Mechanical Properties of Ni3Al and Ni3Al-1B Alloys Fabricated by SHS/HE, Intermetallics, 2011, 19(2), p 137–142. https://doi.org/10.1016/j.intermet.2010.08.027s

    Article  CAS  Google Scholar 

  4. W. Liang, Y. Jiang, D. Hongxing, Y. He, N. Xu, J. Zou, B. Huang, and C.T. Liu, Article The Corrosion Behavior of Porous Ni3Al Intermetallic Materials in Strong Alkali Solution, Intermetallics, 2011, 19(11), p 1759–1765. https://doi.org/10.1016/j.intermet.2011.06.016s

    Article  CAS  Google Scholar 

  5. S.R.A. Akhtar and V.K. Sikka, Article Cavitation Erosion Of NiAl, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 1999, 30(2), p 335–343.

    Article  ADS  Google Scholar 

  6. J.T. Chang, C.H. Yeh, J.L. He, and K.C. Chen, Article Cavitation Erosion and Corrosion Behavior of Ni-Al Intermetallic Coatings, Wear, 2003, 255(1–6), p 162–169. https://doi.org/10.1016/s0043-1648(03)00199-6s

    Article  CAS  Google Scholar 

  7. J. Wen, H. Cui, N. Wei, X. Song, G. Zhang, C. Wang, and Q. Song, Article Effect of Phase Composition and Microstructure on the Corrosion Resistance of Ni-Al Intermetallic Compounds, J. Alloys Compd., 2017, 695, p 2424–2433. https://doi.org/10.1016/j.jallcom.2016.11.138s

    Article  CAS  Google Scholar 

  8. K.V. Rybalka, L.A. Beketaeva, N.G. Bukhan’ko, and A.D. Davydov, Article Electrochemical Behavior and the Rate of General Corrosion of NiAl Intermetallic Compound in the Unbuffered Sodium Chloride Solutions, Corros. Sci., 2011, 53(2), p 630–636. https://doi.org/10.1016/j.corsci.2010.10.016s

    Article  CAS  Google Scholar 

  9. C. Xu, L. Du, B. Yang, and W. Zhang, Article The effect of Al Content on the Galvanic Corrosion Behaviour of Coupled Ni/Graphite and Ni-Al Coatings, Corros. Sci., 2011, 53(6), p 2066–2074. https://doi.org/10.1016/j.corsci.2011.02.019s

    Article  CAS  Google Scholar 

  10. M. Alizadeh and G. Mohammadi, Article Effect of Micro-Alloying Chromium on the Corrosion Resistance of Nanocrystalline Nickel Aluminide Intermetallic Produced by Mechanical Alloying process, Mater. Lett., 2012, 67(1), p 148–150. https://doi.org/10.1016/j.matlet.2011.09.068s

    Article  CAS  Google Scholar 

  11. H.L. Zhao, F. Qiu, S.B. Jin, and Q.C. Jiang, Article High Work-Hardening Effect of the Pure NiAl Intermetallic Compound Fabricated by the Combustion Synthesis and Hot Pressing Technique, Mater. Lett., 2011, 65(17–18), p 2604–2606. https://doi.org/10.1016/j.matlet.2011.05.091s

    Article  CAS  Google Scholar 

  12. Y. Shu, A. Suzuki, N. Takata, and M. Kobashi, Article Fabrication of Porous NiAl Intermetallic Compounds with a Hierarchical Open-Cell Structure by Combustion Synthesis Reaction and Space Holder Method, J. Mater. Process. Technol., 2019, 264, p 182–189. https://doi.org/10.1016/j.jmatprotec.2018.09.010s

    Article  CAS  Google Scholar 

  13. M. Abedi, A. Asadi, S. Sovizi, D. Moskovskikh, S. Vorotilo, and A. Mukasyan, Article Influence of Pulsed Direct Current on the Growth Rate of Intermetallic Phases in the Ni-Al System During Reactive Spark Plasma Sintering, Scr. Mater., 2022, 216, p 114759. https://doi.org/10.1016/j.scriptamat.2022.114759s

    Article  CAS  Google Scholar 

  14. A. Pariyar, C.S. Perugu, K. Dash, and S.V. Kailas, Article Microstructure and Mechanical Behavior of High Toughness Al-Based Metal Matrix Composite Reinforced with In-situ Formed Nickel Aluminides, Mater. Charact., 2021, 171, p 110776. https://doi.org/10.1016/j.matchar.2020.110776s

    Article  CAS  Google Scholar 

  15. X.Z. Jianjun Yuan and C. Zhang, Article NiAl intermetallic Coatings Prepared by Thermal Plasma Assisted Thermal Explosion Process, Optoelectron. Adv. Mater. Rapid Commun., 2015, 9(5), p 678–681.

    Google Scholar 

  16. Y. Yu, J. Zhou, J. Chen, H. Zhou, C. Guo, L. Wang, and L. Yang, Article Preparation, Microstructure and Tribological Behavior of Laser Cladding NiAl Intermetallic Compound coatings, Wear, 2012, 274–275, p 298–305. https://doi.org/10.1016/j.wear.2011.09.011s

    Article  Google Scholar 

  17. A. Khajesarvi and G. Akbari, Article Properties Evaluation and Studying Production Mechanism of Nanocrystalline NiAl Intermetallic Compound by Mechanical Alloying, Metall. Mater. Trans. A, 2016, 47(4), p 1881–1888. https://doi.org/10.1007/s11661-016-3343-8s

    Article  CAS  Google Scholar 

  18. M. Seyring and M. Rettenmayr, Article Impact of crystallography at Ni/NiAl Interfaces on the Nucleation of Ni3Al, Acta Mater., 2021, 208, p 116713. https://doi.org/10.1016/j.actamat.2021.116713s

    Article  CAS  Google Scholar 

  19. L. Wang, C. Yao, J. Shen, Y. Zhang, T. Wang, H. Xu, L. Gao, and G. Zhang, Article Microstructures and Compressive Properties of NiAl-Cr(Mo) and NiAl-Cr Eutectic Alloys with Different Fe Contents, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2019, 744, p 593–603. https://doi.org/10.1016/j.msea.2018.12.085s

    Article  CAS  Google Scholar 

  20. Y. Jianpeng, Y. Yueguang, and S. Jie, Article Cermet Composite Coating with a Ductile Ni3Al Binder Phase and an In-situ Cr7C3 Augmented Phase, Intermetallics, 2021, 138, p 107300. https://doi.org/10.1016/j.intermet.2021.107300s

    Article  Google Scholar 

  21. B. Tang, D.A. Cogswell, G. Xu, S. Milenkovic, and Y. Cui, Article The Formation Mechanism of Eutectic Microstructures in NiAl-Cr Composites, Phys. Chem. Chem. Phys., 2016, 18(29), p 19773–19786. https://doi.org/10.1039/c6cp01921hs

    Article  CAS  PubMed  Google Scholar 

  22. F. Ji, S.-Y. Ma, T.-Z. Xin, and S.-Q. Wang, Article First-Principles Study of the Effect of Boron on Grain Boundary in NiAl, Comput. Mater. Sci., 2016, 121, p 1–5. https://doi.org/10.1016/j.commatsci.2016.04.024s

    Article  CAS  Google Scholar 

  23. X.-L. Hu, X. Liu, Z. Xu, J. Liang, and T. Wang, Article First-Principles Investigation of the Effects of B Impurities on the Mechanical Properties of NiAl Intermetallics, Sci. China Phys. Mech. Astron., 2011, 54(5), p 809–814. https://doi.org/10.1007/s11433-011-4325-xs

    Article  CAS  ADS  Google Scholar 

  24. Y. Wang, E. Hao, X. Zhao, Y. Xue, Y. An, and H. Zhou, Article Effect of Microstructure Evolution of Ti6Al4V Alloy on its Cavitation Erosion and Corrosion Resistance in Artificial Seawater, J. Mater. Sci. Technol., 2022, 100, p 169–181. https://doi.org/10.1016/j.jmst.2021.06.005s

    Article  CAS  Google Scholar 

  25. M.E. Orazem, I. Frateur, B. Tribollet, V. Vivier, S. Marcelin, N. Pébère, A.L. Bunge, E.A. White, D.P. Riemer, and M. Musiani, Article Dielectric Properties of Materials Showing Constant-Phase-Element (CPE) Impedance Response, J. Electrochem. Soc., 2013, 160(6), p C215–C225. https://doi.org/10.1149/2.033306jess

    Article  CAS  Google Scholar 

  26. Z. Cui, L. Wang, H. Ni, W. Hao, C. Man, S. Chen, X. Wang, Z. Liu, and X. Li, Article Influence of Temperature on the Electrochemical and Passivation Behavior of 2507 Super Duplex Stainless Steel in Simulated Desulfurized Flue Gas Condensates, Corros. Sci., 2017, 118, p 31–48. https://doi.org/10.1016/j.corsci.2017.01.016s

    Article  CAS  Google Scholar 

  27. M.E.O. Bryan Hirschorn, B. Tribollet, V. Vivier, and I. Frateur, Article Constant-Phase-Element Behavior Caused by Resistivity Distributions in Films, J. Electrochem. Soc., 2010, 157(12), p 458–463. https://doi.org/10.1149/1.3499565s

    Article  Google Scholar 

  28. H. Tian, Z. Cui, H. Ma, P. Zhao, M. Yan, X. Wang, and H. Cui, Article Corrosion Evolution and Stress Corrosion Cracking Behavior of a Low Carbon Bainite Steel in the Marine Environments: Effect of the Marine Zones, Corros. Sci., 2022, 206, p 110490. https://doi.org/10.1016/j.corsci.2022.110490s

    Article  CAS  Google Scholar 

  29. H. Duan, B. Liu, A. Fu, J. He, T. Yang, C.T. Liu, and Y. Liu, Article Segregation Enabled Outstanding Combination of Mechanical and Corrosion Properties in a FeCrNi Medium Entropy alloy Manufactured by Selective Laser Melting, J. Mater. Sci. Technol., 2022, 99, p 207–214. https://doi.org/10.1016/j.jmst.2021.05.018s

    Article  CAS  Google Scholar 

  30. J. Nie, L. Wei, Y. Jiang, Q. Li, and H. Luo, Article Corrosion Mechanism of Additively Manufactured 316 L Stainless Steel in 3.5 wt.% NaCl Solution, Mater. Today Commun., 2021, 26, p 101648. https://doi.org/10.1016/j.mtcomm.2020.101648s

    Article  CAS  Google Scholar 

  31. E. Saebnoori, T. Shahrabi, H. Jafarian, and M. Ghaffari, Article Changes in the Resistance to Corrosion of Thermally Passivated Titanium Aluminide During Exposure to Sodium Chloride Solution, Res. Chem. Intermed., 2013, 41(2), p 1079–1095. https://doi.org/10.1007/s11164-013-1255-4s

    Article  Google Scholar 

  32. L. Wang, J. Liang, H. Li, L. Cheng, and Z. Cui, Article Quantitative Study of the Corrosion Evolution and Stress Corrosion Cracking of high Strength Aluminum Alloys in Solution and Thin Electrolyte Layer Containing Cl, Corros. Sci., 2021, 178, p 109076. https://doi.org/10.1016/j.corsci.2020.109076s

    Article  CAS  Google Scholar 

  33. B.K. Szczygieł, Małgorzata, Article Composite Ni/Al2O3 Coatings and their Corrosion Resistance, Electrochim. Acta, 2005, 50(20), p 4188–4195. https://doi.org/10.1016/j.electacta.2005.01.040s

    Article  Google Scholar 

  34. L.W. Yuantao Zhao, Z. Qin, and C. Wang, Article The Roles of Ti Particles in Improving the Corrosion Resistance of Electrochemically Assembled Ni-Ti Composite Coatings, Corros. Sci., 2017, 73(9), p 1107–1118.

    Article  Google Scholar 

  35. L. Wang, J. Zhang, Y. Gao, Q. Xue, L. Hu, and T. Xu, Article Grain Size Effect in Corrosion Behavior of Electrodeposited Nanocrystalline Ni Coatings in Alkaline Solution, Scr. Mater., 2006, 55(7), p 657–660. https://doi.org/10.1016/j.scriptamat.2006.04.009s

    Article  Google Scholar 

  36. Y. Zhao, S. Xing, L. Wang, Y. Sun, H. Liu, K. Zhan, C. Jiang, V. Ji, and W. Li, Article Roles of Growth Mechanisms of Ni Deposits on Corrosion Behaviors of NixAlyTi Composite Coatings, Appl. Surf. Sci., 2019, 492, p 177–188. https://doi.org/10.1016/j.apsusc.2019.06.188s

    Article  CAS  ADS  Google Scholar 

  37. S. Chen, H. Deng, G. Liu, and D. Zhang, Article Corrosion of Q235 Carbon Steel in Seawater Containing Mariprofundus Ferrooxydans and Thalassospira sp, Front. Microbiol., 2019, 10, p 936. https://doi.org/10.3389/fmicb.2019.00936s

    Article  PubMed  PubMed Central  Google Scholar 

  38. D. Chaliampalias, S. Andronis, N. Pliatsikas, E. Pavlidou, D. Tsipas, S. Skolianos, K. Chrissafis, G. Stergioudis, P. Patsalas, and G. Vourlias, Article Formation and Oxidation Resistance of Al/Ni Coatings on Low Carbon Steel by Flame Spray, Surf. Coat. Technol., 2014, 255, p 62–68. https://doi.org/10.1016/j.surfcoat.2013.12.057s

    Article  CAS  Google Scholar 

  39. M. Palcut, P. Priputen, M. Kusý, and J. Janovec, Article Corrosion Behaviour of Al-29at%Co Alloy in Aqueous NaCl, Corros. Sci., 2013, 75, p 461–466. https://doi.org/10.1016/j.corsci.2013.06.031s

    Article  CAS  Google Scholar 

  40. V.M.C.A. Oliveira, C. Aguiar, A.M. Vazquez, A. Robin, and M.J.R. Barboza, Article Improving Corrosion Resistance of Ti-6Al-4V Alloy Through Plasma-Assisted PVD Deposited Nitride Coatings, Corros. Sci., 2014, 88, p 317–327. https://doi.org/10.1016/j.corsci.2014.07.047s

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Funding

The authors did not receive support from any organization for the submitted work. The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: LC, ML, SW; Methodology: SW, ZG, BL; Formal analysis and investigation: JX, ZD, ZG; Writing-original draft preparation: LC; Writing-review and editing: ML, SW, BL.

Corresponding author

Correspondence to Min Li.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Li, M., Wang, S. et al. Microstructure and Corrosion Resistance of Ni-Al Coating Prepared by Plasma Transferred Arc Technology. J. of Materi Eng and Perform 33, 1596–1614 (2024). https://doi.org/10.1007/s11665-023-08084-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08084-0

Keywords

Navigation