Skip to main content
Log in

Comparison of Electrochemical Properties of CrSiCN, CrBCN, and CrSiBCN Films in Acidic and Alkaline Artificial Sweat

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Wearable device shell materials will inevitably be corroded by human sweat during use. The purpose of this study is to construct three composite films of CrSiCN, CrBCN and CrSiBCN with corrosion resistance on silicon wafers and 316L stainless steel substrates by using closed-field unbalanced magnetron sputtering technology as protective films, to protect the corrosion of shell materials. The electrochemical behavior of Si and B element doped films under acidic and alkaline artificial sweat was studied by electrochemical noise, AC impedance and potentiodynamic polarization electrochemical measurement techniques, and the microstructural changes of the films were characterized by scanning electron microscopy, x-ray diffraction and laser Raman spectroscopy. Electrochemical test results show that the films exhibit a higher corrosion rate compared to alkaline artificial sweat due to the higher concentration of chloride ions, hydrogen ions, and lactic acid corrosive ions in acidic artificial sweat. The results also demonstrated that the inhibitory effect of a high concentration of hydrogen ions in acidic artificial sweat resulted in a relatively low surface oxygen content, whereas the doping of the boron element promoted the growth of passive film on the coating surface, thereby decreasing the corrosion rate of CrBCN film in acidic sweat. Furthermore, the high concentration of hydroxyl ions in alkaline artificial sweat accelerates the electrochemical reactions of passive film growth (mainly chromium oxides and hydroxides), hence enhancing the corrosion resistance of the CrSiCN film with its denser and smoother surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G. Matzeu, L. Florea and D. Diamond, Advances in Wearable Chemical Sensor Design for Monitoring Biological Fluids, Sens. Actuators B Chem., 2015, 211, p 403–418.

    Article  CAS  Google Scholar 

  2. X. Wang, Z. Liu and T. Zhang, Flexible Sensing Electronics for Wearable/Attachable Health Monitoring, Small, 2017, 13(25), p 1602790.

    Article  Google Scholar 

  3. A.M. Fekry, A.A. Ghoneim and M.A. Ameer, Electrochemical Impedance Spectroscopy of Chitosan Coated Magnesium Alloys in a Synthetic Sweat Medium, Surf. Coat. Technol., 2014, 238, p 126–132.

    Article  CAS  Google Scholar 

  4. Y.W. Song, D.Y. Shan and E.H. Han, Corrosion Behaviors of Electroless Plating Ni–P Coatings Deposited on Magnesium Alloys in Artificial Sweat Solution, Electrochim. Acta., 2007, 53(4), p 2009–2015.

    Article  CAS  Google Scholar 

  5. C. Prakash, P. Bhargava, S. Tiwari, B. Majumdar and R.K. Bhargava, Skin Surface pH in Acne Vulgaris: Insights from an Observational Study and Review of the Literature, J. Clin. Aesthet. Dermatol., 2017, 10(7), p 33–39.

    PubMed  PubMed Central  Google Scholar 

  6. S.C. Ferreira, E. Ariza, L.A. Rocha, J.R. Gomes, P. Carvalho, F. Vaz, A.C. Fernandes, L. Rebouta, L. Cunha, E. Alves, P. Goudeau and J.P. Rivière, Tribocorrosion Behaviour of ZrOxNy Thin Films for Decorative Applications, Surf. Coat. Technol., 2006, 200(22), p 6634–6639.

    Article  CAS  Google Scholar 

  7. C. Ji, Q. Guo, J. Li, Y. Guo, Z. Yang, W. Yang, D. Xu and B. Yang, Microstructure and Properties of CrN Coating via Multi-arc Ion Plating on the Valve Seat Material Surface, J. Alloys Compd., 2022, 891, p 161966.

    Article  CAS  Google Scholar 

  8. M.S.I. Chowdhury, B. Bose, K. Yamamoto, L.S. Shuster, J. Paiva, G.S. Fox-Rabinovich and S.C. Veldhuis, Wear Performance Investigation of PVD Coated and Uncoated Carbide Tools During High-speed Machining of Ti6Al4V Aerospace Alloy, Wear, 2020, 446–447, p 203168.

    Article  Google Scholar 

  9. G. Berg, C. Friedrich, E. Broszeit and C. Berger, Development of Chromium Nitride Coatings Substituting Titanium Nitride, Surf. Coat. Technol., 1996, 86–87, p 184–191.

    Article  Google Scholar 

  10. A. Vereschaka, V. Tabakov, S. Grigoriev, N. Sitnikov, F. Milovich, N. Andreev and J. Bublikov, Investigation of Wear Mechanisms for the Rake Face of a Cutting Tool with a Multilayer Composite Nanostructured Cr–CrN-(Ti, Cr, Al, Si)N Coating in High-speed Steel Turning, Wear, 2019, 438–439, 203069.

    Article  Google Scholar 

  11. J.-H. Park, H.-G. Kim, J.-Y. Park, Y.-I. Jung, D.-J. Park and Y.-H. Koo, High Temperature Steam-Oxidation Behavior of Arc Ion Plated Cr Coatings for Accident Tolerant Fuel Claddings, Surf. Coat. Technol., 2015, 280, p 256–259.

    Article  CAS  Google Scholar 

  12. C. Liu, Q. Bi and A. Matthews, EIS Comparison on Corrosion Performance of PVD TiN and CrN Coated Mild Steel in 0.5 N NaCl Aqueous Solution, Corros. Sci., 2001, 43(10), p 1953–1961.

    Article  CAS  Google Scholar 

  13. C. Petrogalli, L. Montesano, M. Gelfi, G.M. La Vecchia and L. Solazzi, Tribological and Corrosion Behavior of CrN Coatings: Roles of Substrate and Deposition Defects, Surf. Coat. Technol., 2014, 258, p 878–885.

    Article  CAS  Google Scholar 

  14. P. Panjan, M. Čekada, M. Panjan, D. Kek-Merl, F. Zupanič, L. Čurković and S. Paskvale, Surface Density of Growth Defects in Different PVD Hard Coatings Prepared by Sputtering, Vacuum, 2012, 86(6), p 794–798.

    Article  CAS  ADS  Google Scholar 

  15. S. Khamseh, E. Alibakhshi, B. Ramezanzadeh, J.-S. Lecomte, P. Laheurte, X. Noirefalize, F. Laoutid and H. Vahabi, Tailoring Hardness and Electrochemical Performance of TC4 Coated Cu/a-C Thin Coating with Introducing Second Metal Zr, Corros. Sci., 2020, 172, 108713.

    Article  CAS  Google Scholar 

  16. S. Khamseh, E. Alibakhshi, M. Mahdavian, M.R. Saeb, H. Vahabi, N. Kokanyan and P. Laheurte, Magnetron-Sputtered Copper/Diamond-Like Carbon Composite Thin Films with Super Anti-corrosion Properties, Surf. Coat. Technol., 2018, 333, p 148–157.

    Article  CAS  Google Scholar 

  17. P. Wieciński, J. Smolik, H. Garbacz and K.J. Kurzydłowski, Failure and Deformation Mechanisms During Indentation in Nanostructured Cr/CrN Multilayer Coatings, Surf. Coat. Technol., 2014, 240, p 23–31.

    Article  Google Scholar 

  18. K. Holmberg, A. Matthews and H. Ronkainen, Coatings Tribology—Contact Mechanisms and Surface Design, Tribol. Int., 1998, 31(1), p 107–120.

    Article  CAS  Google Scholar 

  19. H. Kindlund, D.G. Sangiovanni, I. Petrov, J.E. Greene and L. Hultman, A Review of the Intrinsic Ductility and Toughness of Hard Transition-Metal Nitride Alloy Thin Films, Thin Solid Films, 2019, 688, 137479.

    Article  CAS  ADS  Google Scholar 

  20. J. Lin, J. Jang, I.-W. Park and R. Wei, Structure and Properties of CrSiCN Coatings Deposited by Pulsed dc Magnetron Sputtering for Wear and Erosion Protection, Surf. Coat. Technol., 2016, 287, p 44–54.

    Article  CAS  Google Scholar 

  21. F. Cai, X. Huang and Q. Yang, Mechanical Properties, Sliding Wear and Solid Particle Erosion Behaviors of Plasma Enhanced Magnetron Sputtering CrSiCN Coating Systems, Wear, 2015, 324–325, p 27–35.

    Article  Google Scholar 

  22. F. Cai, X. Huang, Q. Yang, R. Wei and D. Nagy, Microstructure and Tribological Properties of CrN and CrSiCN Coatings, Surf. Coat. Technol., 2010, 205(1), p 182–188.

    Article  CAS  Google Scholar 

  23. Q. Wang, F. Zhou, L. Zhu, M. Zhang and J. Kong, Mechanical and Tribological Evaluation of CrSiCN, CrBCN and CrSiBCN Coatings, Tribol. Int., 2019, 130, p 146–154.

    Article  CAS  Google Scholar 

  24. Z. Wu, F. Zhou, Q. Ma, Q. Wang, Z. Zhou and L. Kwok-Yan Li, Tribological and Electrochemical Properties of Cr–Si–C–N Coatings in Artificial Seawater, RSC Adv., 2016, 6(80), p 76724–76735.

    Article  CAS  ADS  Google Scholar 

  25. F. Zhou, Q. Ma, Q. Wang, Z. Zhou and L.K.-Y. Li, Electrochemical and Tribological Properties of CrBCN Coatings with Various B Concentrations in Artificial Seawater, Tribol. Int., 2017, 116, p 19–25.

    Article  CAS  Google Scholar 

  26. Q. Ma, F. Zhou, Q. Wang, Z. Wu, K. Chen, Z. Zhou and L. Kwok-Yan Li, Influence of CrB2 Target Current on the Microstructure, Mechanical and Tribological Properties of Cr–B–C–N Coatings in Water, RSC Adv., 2016, 6(53), p 47698–47711.

    Article  CAS  ADS  Google Scholar 

  27. M.M. Puurtinen, S.M. Komulainen, P.K. Kauppinen, J.A.V. Malmivuo, and J.A.K. Hyttinen. Measurement of noise and impedance of dry and wet textile electrodes, and textile electrodes with hydrogel, in 2006 International Conference of the IEEE Engineering in Medicine and Biology Society (2006).

  28. K. Hladky and J.L. Dawson, The Measurement of Corrosion Using Electrochemical 1f Noise, Corros. Sci., 1982, 22(3), p 231–237.

    Article  CAS  Google Scholar 

  29. P. Pedrosa, D. Machado, P. Fiedler, E. Alves, N.P. Barradas, J. Haueisen, F. Vaz and C. Fonseca, Electrochemical and Structural Characterization of Nanocomposite Agy:TiNx Thin Films for Dry Bioelectrodes: the Effect of the N/Ti Ratio and Ag Content, Electrochim. Acta., 2015, 153, p 602–611.

    Article  CAS  Google Scholar 

  30. D.A. Eden, M. Hoffman, and B.S. Skerry, Application of electrochemical noise measurements to coated systems R.A. Dickie, F.L. Floyd (Eds.), Polym. Mater. Corros. Control, American Chemical Society, Washington, DC (1986), Chapter 4, p 36–47.

  31. J. Riskin, Chapter 5—corrosion behavior investigations of traditional structural metallic materials in electrochemical plant media, taking into account attack by leakage currents, Electrocorrosion and Protection of Metals. J. Riskin Ed., Elsevier, Amsterdam, 2008, p 69–78

    Chapter  Google Scholar 

  32. A. Bishnoi, S. Kumar and N. Joshi, Chapter 9—wide-angle X-ray diffraction (WXRD): technique for characterization of nanomaterials and polymer nanocomposites, Microscopy Methods in Nanomaterials Characterization. S. Thomas, R. Thomas, A.K. Zachariah, R.K. Mishra Ed., Elsevier, Amsterdam, 2017, p 313–337

    Chapter  Google Scholar 

  33. M. Isakhani-Zakaria, S.R. Allahkaram and H.A.J.C.S. Ramezani-Varzaneh, Evaluation of Corrosion Behaviour of Pb-Co3O4 Electrodeposited Coating Using EIS Method, Corros. Sci., 2019, 157, p 472–480.

    Article  CAS  Google Scholar 

  34. X. Zhang, S.O. Pehkonen, N. Kocherginsky and G. Andrew Ellis, Copper Corrosion in Mildly Alkaline Water with the Disinfectant Monochloramine, Corros. Sci., 2002, 44(11), p 2507–2528.

    Article  CAS  Google Scholar 

  35. J. Tedim, A.C. Bastos, S. Kallip, M.L. Zheludkevich and M.G.S. Ferreira, Corrosion Protection of AA2024-T3 by LDH Conversion Films. Analysis of SVET Results, Electrochim. Acta, 2016, 210, p 215–224.

    Article  CAS  Google Scholar 

  36. J. Lu, Y. Zhao, H. Niu, Y. Zhang, Y. Du, W. Zhang and W. Huo, Electrochemical Corrosion Behavior and Elasticity Properties of Ti–6Al–xFe Alloys for Biomedical Applications, Mater. Sci. Eng. C, 2016, 62, p 36–44.

    Article  CAS  Google Scholar 

  37. X. Yang, M. Gao, Y. Liu, J. Li, Y. Huang, G. Wang, J.-Q. Wang and J. Huo, Superior Corrosion Resistance of High-Temperature Ir–Ni–Ta–(B) Amorphous Alloy in Sulfuric Acid Solution, Corros. Sci., 2022, 200, p 110227.

    Article  CAS  Google Scholar 

  38. A.S.O. Gomes, N. Yaghini, A. Martinelli and E. Ahlberg, A Micro-Raman Spectroscopic Study of Cr(OH)3 and Cr2O3 Nanoparticles Obtained by the Hydrothermal Method, J. Raman Spectrosc., 2017, 48(10), p 1256–1263.

    Article  CAS  ADS  Google Scholar 

  39. P. Li, Z. Zhou, H. Xu and Y. Zhang, A novel hydrolysis method to synthesize chromium hydroxide nanoparticles and its catalytic effect in the thermal decomposition of ammonium perchlorate, Thermochim. Acta., 2012, 544, p 71–76.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work has been supported by National Natural Science Foundation of China (Grant No. 51775271). We would like to acknowledge for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, J., Zhou, F., Zhang, M. et al. Comparison of Electrochemical Properties of CrSiCN, CrBCN, and CrSiBCN Films in Acidic and Alkaline Artificial Sweat. J. of Materi Eng and Perform 33, 1131–1142 (2024). https://doi.org/10.1007/s11665-023-08078-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08078-y

Keywords

Navigation