Skip to main content
Log in

Influence of Cooling Rate on Solidification and Segregation Characteristics of Cu-Ni-Si Alloy

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Differential scanning calorimetry (DSC) and confocal scanning laser microscopy (CSLM) were used to investigate the effects of different cooling rates on the solidification and segregation characteristics of Cu-Ni-Si alloy. The microstructures were characterized by electron probe microanalysis and scanning electron microscope. The effects of cooling rate on segregation degree, grain size, solidification temperature and secondary dendrite spacing (λ2) were analyzed, and the correlation function was established. The results show that the characteristic temperature of DSC phase transformation is similar to the characteristic temperature of CSLM in situ microstructure evolution. Increasing cooling rate can reduce segregation degree and refine grains. The relationships between cooling rate and crystallization temperature (TL→S) and secondary dendrite spacing (λ2) with cooling rate are as follows: TL→S = 176 × exp(− v/17.6) + 891 and λ2 = 63 × v−0.236, respectively. The above relations were applied to predict the solidification microstructure characteristics produced by twin-roll strip casting and ingot casting processes, and the predicted results are in good agreement with the experimental values. The advantages of grain refinement and segregation improvement and its optimization mechanism of twin-roll strip casting have been clarified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Q. Lei, Z. Li, T. Xiao, Y. Pang, Z.Q. Xiang, W.T. Qiu, and Z. Xiao, A New Ultrahigh Strength Cu-Ni-Si Alloy, J. Intermet., 2013, 42, p 77–84. https://doi.org/10.1016/j.intermet.2013.05.013

    Article  CAS  Google Scholar 

  2. Q. Lei, Z. Li, M.P. Wang, L. Zhang, Z. Xiao, and Y.L. Jia, The Evolution of Microstructure in Cu-8.0 Ni-1.8 Si-0.15 Mg Alloy During Aging, Mater. Sci. Eng. A, 2010, 527(24–25), p 6728–6733. https://doi.org/10.1016/j.msea.2010.07.023

    Article  CAS  Google Scholar 

  3. Z.Y. Pan, M.P. Wang, Z. Li, Z. Xiao, and C. Chen, Thermomechanical Treatment of Super High Strength Cu-8.0Ni-1.8Si Alloy, Trans. Nonferrous Met. Soc. China, 2007, 17, p 1076–1080.

    Google Scholar 

  4. Q. Dong, D. Zhao, P. Liu, B.K. Kang, and J.L. Huang, Microstructural Changes of Cu-Ni-Si Alloy During Aging, J. Mater. Sci. Technol., 2004, 20, p 99–102.

    CAS  Google Scholar 

  5. Z. Rdzawski and J. Stobrawa, Thermomechanical Processing of Cu-Ni-Si-Cr-Mg Alloy, Mater. Sci. Technol., 1993, 2(12), p 142–145. https://doi.org/10.1179/026708393790171836

    Article  ADS  Google Scholar 

  6. K.M. Sun, L. Li, S.D. Chen, G.M. Xu, G. Chen, R.D.K. Misra, and G. Zhang, A New Approach to Control Centerline Macrosegregation in Al-Mg-Si Alloys During Twin Roll Continuous Casting, Mater. Lett., 2017, 190, p 205–208. https://doi.org/10.1016/j.matlet.2016.12.109

    Article  CAS  Google Scholar 

  7. G.M. Cao, S. Zhang, J. Chen, F. Jia, F. Fang, and C.G. Li, Microstructure and Precipitate Evolution in Cu-3.2Ni-0.75Si Alloy Processed by Twin-Roll Strip Casting, J. Mater. Eng. Perform., 2021, 30(2), p 1318–1329. https://doi.org/10.1007/s11665-020-05371-y

    Article  CAS  Google Scholar 

  8. Z.Y. Liu, Z.S. Lin, S.H. Wang, Y.Q. Qiu, X.H. Liu, and G.D. Wang, Microstructure Characterization of Austenitic Fe-25Mn-22Cr-2Si-0.7N Alloy Processed by Twin Roll Strip Casting, Mater. Charact., 2007, 58, p 974–979. https://doi.org/10.1016/j.matchar.2006.10.005

    Article  CAS  Google Scholar 

  9. M. Daamen, C. Haase, J. Dierdorf, D.A. Molodov, and G. Hirt, Twin-Roll Strip Casting: A Competitive Alternative for the Production of High-Manganese Steels with Advanced Mechanical Properties, Mater. Sci. Eng. A, 2015, 627, p 72–81. https://doi.org/10.1016/j.msea.2014.12.069

    Article  CAS  Google Scholar 

  10. K.S. Pandey, S.K. Pandey, and P. Premkumar, Effect of Cooling Rates on Dendritic Arm Spacing and Hardness of Zn-12%, A1-0.3% Cu Alloy, Indian Foundry J, 1979, 25(12), p 29–32.

    Google Scholar 

  11. M.J. Behnam, P. Davami, and N. Varahram, Effect of Cooling Rate on Microstructure and Mechanical Properties of Gray Cast Iron, Mater. Sci. Eng. A, 2010, 528(2), p 583–588. https://doi.org/10.1016/j.msea.2010.09.087

    Article  CAS  Google Scholar 

  12. E. Wielgosz and T. Kargul, Differential Scanning Calorimetry Study of Peritectic Steel Grades, J. Therm. Anal. Calorim., 2015, 119, p 1547–1553. https://doi.org/10.1007/s10973-014-4302-5

    Article  CAS  Google Scholar 

  13. Z.J. Miao, A.D. Shan, W. Wang, J. Lu, W.L. Xu, and H.W. Song, Solidification Process of Conventional Superalloy by Confocal Scanning Laser Microscope, Trans. Nonferrous Met. Soc., 2011, 21(2), p 236–242. https://doi.org/10.1016/S1003-6326(11)60704-8

    Article  CAS  Google Scholar 

  14. K. Hechu, C. Slater, B. Santillana, S. Clark, and S. Sridhar, A Novel Approach for Interpreting the Solidification Behaviour of Peritectic Steels by Combining CSLM and DSC, Mater. Charact., 2017, 133, p 25–32. https://doi.org/10.1016/j.matchar.2017.09.013

    Article  CAS  Google Scholar 

  15. P.H. Nicácio, A.M. Severo, A.B. Barros, A.K. Albuquerque, R.M. Wellen, and K. Koschek, Approaches on the Complex Crystallization in PLA/Babassu Based on Modulated Differential Scanning Calorimetry Analyses, J. Polym. Environ., 2022, 30(9), p 3840–3851. https://doi.org/10.1007/s10924-022-02468-4

    Article  CAS  Google Scholar 

  16. J.Y. Cheng, B.B. Tang, F.X. Yu, and B. Shen, Evaluation of Nanoscaled Precipitates in a Cu-Ni-Si-Cr Alloy During Aging, Alloys Compd., 2014, 614, p 189–195. https://doi.org/10.1016/j.jallcom.2014.06.089

    Article  CAS  Google Scholar 

  17. Y.S. Hao, J. Li, X. Li, W.C. Liu, G.M. Cao, C.G. Li, and Z.Y. Liu, Influences of Cooling Rates on Solidification and Segregation Characteristics of Fe-Cr-Ni-Mo-N Super Austenitic Stainless Steel, J. Mater. Process. Technol., 2019, 275, p 116326. https://doi.org/10.1016/j.jmatprotec.2019.116326

    Article  CAS  Google Scholar 

  18. Y. Xu, N. Ellendt, X.G. Li, V. Uhlenwinkel, and U. Fritsching, Characterization of Cooling Rate and Microstructure of CuSn Melt Droplet in Drop on Demand Process, Trans. Nonferrous Met. Soc. China, 2017, 27(7), p 1636–1644. https://doi.org/10.1016/S1003-6326(17)60186-9

    Article  CAS  Google Scholar 

  19. J.W. Elmer, S.M. Allen, and T.W. Eagar, Microstructural Development During Solidification of Stainless-Steel Alloys, Metall. Mater. Trans. A, 1989, 20(10), p 2117–2131. https://doi.org/10.1007/BF02650298

    Article  ADS  Google Scholar 

  20. J.H. Perepezko and G. Wilde, Melt Undercooling and Nucleation Kinetics, Curr. Opin. Solid St. M, 2016, 20, p 3–12. https://doi.org/10.1016/j.cossms.2015.07.001

    Article  CAS  Google Scholar 

  21. M. Gholami, I. Altenberger, J. Vesely, H.A. Kuhn, M. Wollmann, M. Janecek, and L. Wagner, Effects of Severe Plastic Deformation on Transformation Kinetics of Precipitates in CuNi3Si1Mg, Mater. Sci. Eng. A, 2016, 676, p 156–164. https://doi.org/10.1016/j.msea.2016.08.099

    Article  CAS  Google Scholar 

  22. L.S. Tian, Y.C. Guo, J.P. Li, F. Xia, M.X. Liang, and Y.P. Bai, Effects of Solidification Cooling Rate on the Microstructure and Mechanical Properties of a Cast Al-Si-Cu-Mg-Ni Piston Alloy, Adv. Mater., 2018 https://doi.org/10.3390/ma11071230

    Article  PubMed  PubMed Central  Google Scholar 

  23. X. Li, F. Gao, J.H. Jiao, G.M. Cao, Y. Wang, and Z.Y. Liu, Influences of Cooling Rates on Delta Ferrite of Nuclear Power 316H Austenitic Stainless Steel, Mater. Charact., 2021, 174, p 111029. https://doi.org/10.1016/j.matchar.2021.111029

    Article  CAS  Google Scholar 

  24. E. Wielgosz and T. Kargul, Differential Scanning Calorimetry Study of Peritectic Steel Grades, J. Therm. Anal. Calorim., 2015, 119, p 1547–1553. https://doi.org/10.1007/s10973-014-4302-5

    Article  CAS  Google Scholar 

  25. Y.M. Won and B.G. Thomas, Simple Model of Microsegregation During Solidification of Steels, Metall. Mater. Trans. A, 2001, 32, p 1755–1767. https://doi.org/10.1007/s11661-001-0152-4

    Article  Google Scholar 

  26. H.T. Liu, Z.H. Liu, Y.Q. Qiu, G.M. Cao, C.C. Li, and G.D. Wang, Characterization of the Solidification Structure and Texture Development of Ferritic Stainless Steel Produced by Twin-roll Strip Casting, Mater. Charact., 2009, 60(1), p 79–82. https://doi.org/10.1016/j.matchar.2008.06.005

    Article  CAS  Google Scholar 

  27. G. Li, W. Yu, and Q. Cai, Investigation of Reduction Pretreatment Process for Continuous Casting, J. Mater. Process. Technol., 2016, 227, p 41–48. https://doi.org/10.1016/j.jmatprotec.2015.08.005

    Article  CAS  Google Scholar 

  28. T. Xiao, X.F. Sheng, Q. Lei, J.L. Zhu, S.Y. Li, Z.R. Liu, and Z. Li, Effect of Magnesium on Microstructure Refinements and Properties Enhancements in High-Strength Cu-Ni-Si Alloys, Acta Metall. Sin. (Engl. Lett.), 2020, 33, p 375–384. https://doi.org/10.1007/s40195-019-00953-9

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National MCF (Magnetic Confinement Fusion) Energy R&D Program of China (with Grant No. 2018YFE0306102) and the Postdoctoral Science Foundation of China (Grant No. 2021M701167).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangming Cao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, G., Li, R., Zhang, S. et al. Influence of Cooling Rate on Solidification and Segregation Characteristics of Cu-Ni-Si Alloy. J. of Materi Eng and Perform 33, 1274–1282 (2024). https://doi.org/10.1007/s11665-023-08067-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08067-1

Keywords

Navigation