Skip to main content
Log in

Friction Durability of Anodized Aluminum Alloy 2017A under Dry Conditions

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this paper, the friction durability of an anodized aluminum alloy is investigated on relation to the effects of two elaboration parameters: the anodizing time (called the reaction time RT) and the applied current (J). For this purpose, the tribological behavior of the developed oxide layer is characterized using scratch and reciprocating cyclic friction tests under dry and severe conditions. Energy-dispersive x-ray spectroscopy, scanning electron microscopy and surface profilometry were used to correlate between the cyclic response and the worn surfaces and to highlight the impact of RT and J. The anodized layer exhibited an excellent wear resistance at 90 min RT, but its friction durability decreased at 30 min RT. The morphology of the anodized surface influenced the establishment and evolution of the friction-wear layer, which acted as a glass layer for 30 min RT/1A/dm2 (J) and an abrasive third body resource for 90 min RT/1A/dm2 (J) and for 30 min RT/2A/dm2 (J). The variation in the thickness, which affected by the change of the J and RT, has a strong influence on the adhesion strength of the oxide layer. The higher the oxide layer thickness is, the greater the adhesion strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

RT:

Reaction time

J:

Applied current

Min:

Minute

°C:

Degree celsius

dm:

Decimeter

cm:

Centimeter

rpm:

Revolution per minute

SEM:

Scanning electron microscope

EDX:

X-ray dispersive energy

Exp.:

Experiment

Al:

Aluminum

Si:

Silicon

Fe:

Iron

Cu:

Copper

Mn:

Manganese

Mg:

Magnesium

Na:

Sodium

Cl:

Chlorine

A:

Ampere

V:

Volt

Cr:

Chromium

Zn:

Zinc

Ti:

Titanium

H:

Hydrogen

Zr:

Zirconium

C:

Carbon

mm:

Millimeter

μm:

Micrometer

nm:

Nanometer

O:

Oxygen

References

  1. M. Roshani, A.S. Rouhaghdam, M. Aliofkhazraei and A.H. Astaraee, Optimization of Mechanical Properties for Pulsed Anodizing of Aluminum, Surf. Coat. Technol., 2017, 310, p 17–24. (in English)

    Article  CAS  Google Scholar 

  2. J. Fang, J. Mo and J. Li, Microstructure Difference of 5052 Aluminum Alloys Under Conventional Drawing and Electromagnetic Pulse Assisted Incremental Drawing, Mater. Charact., 2017, 129, p 88–97. (in English)

    Article  CAS  Google Scholar 

  3. J.H. Martin, B.D. Yahata and J.M. Hundley, 3D Printing of High-Strength Aluminium Alloys, Nature, 2017, 549, p 365–379. (in English)

    Article  CAS  PubMed  ADS  Google Scholar 

  4. E.A. El-danaf, M.M. El-rayes and M.S. Soliman, Low Temperature Enhanced Ductility of Friction Stir Processed 5083 aluminum Alloy, Bull. Mater. Sci., 2011, 34, p 1447. (in English)

    Article  CAS  Google Scholar 

  5. E. Arablou, A. Eshaghi and S.R. Bakhshi, Investigation of Chemical Etching and Surface Modification Effect on the Superhydrophobic, Self-Cleaning and Corrosion Behaviour of Aluminium Substrate, Bull. Mater. Sci., 2022, 176, p 45. (in English)

    Google Scholar 

  6. X. Meng, G. Wei, X. Zhao and G. Hongliang, Study on Anodic Oxidation of 2024 Aluminum Alloys in Sulfuric-Citric Acid, Mater. Sci. Forum, 2014, 788, p 236–242. (in English)

    Article  Google Scholar 

  7. P.G. Sheasby and R. Pinner, The Surface Treatment and Finishing of Aluminum and its Alloys, ASM international, Almere, 2001. (in French)

    Google Scholar 

  8. G.S. Lee, S.H. Bae and Y.Z. Lee, The Influence of Formation of Transfer Layer on the Characteristics of Friction and Wear Mechanism Between Several Coatings and Anodized Aluminum Alloy, Surf. Coat. Technol., 2010, 205, p 152–157. (in English)

    Article  Google Scholar 

  9. J.H. Jeon, P.S. Lee, K.H. Lee, H.C. Park and W. Hwang, Bending Fatigue Characteristics of Nanohoneycomb Structures, Compos. Struct., 2008, 82, p 28–35. (in English)

    Article  Google Scholar 

  10. L. Jieqin, W. Guoying, W. Yundan, G. Changfa and L. Jiang, Aluminum Alloy AA2024 Anodized from the Mixed Acid System with Enhanced Mechanical Properties, Surf. Interfaces, 2018, 13, p 46–50. (in English)

    Article  Google Scholar 

  11. M. Mehdizade, M. Soltanieh and A. Reza Eivan, Investigation of Anodizing Time and Pulse Voltage Modes on the Corrosion Behavior of Nanostructured Anodic Layer in Commercial Pure Aluminum, Surf. Coat. Technol., 2019, 358, p 741–752. (in English)

    Article  CAS  Google Scholar 

  12. A.A. Sarhan, E. Zalnezhad and M. Hamdi, The Influence of Higher Surface Hardness on Fretting Fatigue Life of Hard Anodized Aerospace AL7075-T6 Alloy, Mater. Sci. Eng., 2013, 560, p 377–387. (in English)

    Article  CAS  Google Scholar 

  13. S. Theohari and C. Kontogeorgou, Effect of Temperature on the Anodizing Process of Aluminum Alloy AA 5052, Appl. Surf. Sci., 2013, 284, p 611–618. (in English)

    Article  CAS  ADS  Google Scholar 

  14. M. Schneider, T. Liebmann, U. Langklotz and A. Michaelis, Microelectrochemical Investigation of Anodic Oxide Formation on the Aluminum Alloy AA2024, Electrochim. Acta, 2017, 249, p 198–205. (in English)

    Article  CAS  Google Scholar 

  15. K.M. Chahrour, M.A. Naser, M.R. Hashim, N.G. Elfadill, W. Maryam, M.A. Ahmad and M. Bououdina, Effects of the Voltage and Time of Anodization on Modulation of the Pore Dimensions of AAO Films for Nanomaterials Synthesis, Superlatt. Microstruct., 2015, 88, p 489–500. (in English)

    Article  CAS  ADS  Google Scholar 

  16. M. Sepúlveda, J.G. Castaño and F. Echeverría, Influence of Temperature and Time on the Fabrication of Self-Ordering Porous Alumina by Anodizing in Etidronic Acid, App. Surf. Sci., 2018, 454, p 210–217. (in English)

    Article  ADS  Google Scholar 

  17. L. Juan, Z. Zhang, L. Yuxin, M. Yingjun, L. Chen, Z. Zhongyue and S. Runguang, Self-Organization Process of Aluminum Oxide during Hard Anodization, Electrochim. Acta, 2016, 213, p 14–20. (in English)

    Article  Google Scholar 

  18. S.A. Abdel-Gawad, W.M. Osman and A.M. Fekry, Characterization and Corrosion Behavior of Anodized Aluminum Alloys for Military Industries Applications in Artificial Seawater, Surf. Interfaces, 2019, 14, p 314–323. (in English)

    Article  CAS  Google Scholar 

  19. M. Guezmil, W. Bensalah, A. Khalladi, K. Elleuch, M. De-Petris Wery and H.F. Ayedi, Effect of Test Parameters on the Friction Behaviour of Anodized Aluminium Alloy, Int. Scholar. Res. Notices, 2014, 2014, p 795745. (in English)

    Article  CAS  Google Scholar 

  20. R.K. Choudhary, P. Mishra, V. Kain, K. Singh, S. Kumar and J.K. Chakravartty, Scratch Behavior of Aluminum Anodized in Oxalic Acid: Effect of Anodizing Potential, Surf. Coat. Technol., 2015, 283, p 135–147. (in English)

    Article  CAS  Google Scholar 

  21. Z.Y. Li, Z.B. Cai, Y. Cui, J.H. Liu and M.H. Zhu, Effect of Oxidation Time on the Impact Wear of Micro-Arc oxidation Coating on Aluminum Alloy, Wear, 2019, 426, p 285–295. (in English)

    Article  Google Scholar 

  22. L. Gyu-Sun, C. Joohoon, C. Yong Chan, B. Sang Don and L. Young-Ze, Tribological Effects of Pores on an Anodized Al Alloy Surface as Lubricant Reservoir, Curr. Appl. Phys., 2011, 11, p 182–186. (in English)

    Article  Google Scholar 

  23. M. Remešová, S. Tkachenko, D. Kvarda, I. Ročňáková, B. Gollas, M. Menelaou, L. Čelko and J. Kaiser, Effects of Anodizing Conditions and the Addition of Al2O3/PTFE Particles on the Microstructure and the Mechanical Properties of Porous Anodic Coatings on the AA1050 Aluminium Alloy, App. Surf. Sci., 2020, 513, p 145780. (in English)

    Article  Google Scholar 

  24. S. Mezlini, K. Elleuch and P. Kapsa, The Effect of Sulphuricanodisation of Aluminium Alloys on Contact Problems, Surf. Coat. Technol., 2006, 200, p 2852–2856. (in English)

    Article  CAS  Google Scholar 

  25. M. Guezmil, W. Bensalah, A. Khalladi, K. Elleuch, M. Depetris-wery and H.F. Ayedi, Friction Coefficient and Microhardness of Anodized Aluminum Alloys Under Different Elaboration Conditions, Trans. Nonferr. Met. Soc. China, 2015, 25, p 1950–1960. (in English)

    Article  CAS  Google Scholar 

  26. K. Hyo-sang, K. Dae-hyun, L. Woo, S. Jai Cho, H. Jun-Hee and A. Hyo-Sok, Tribological Properties of Nanoporous Anodic Aluminum Oxide Film, Surf. Coat. Technol., 2010, 205, p 1431–1437. (in English)

    Article  Google Scholar 

  27. J. Durkee, Cleaning of Aluminum: Harvey in North Dakota writes…, FMetal Finish, 2009, 107, p 60–62. (in English)

    Article  Google Scholar 

  28. A.F. Yetim, Investigation of Wear Behavior of Titanium Oxide Films, Produced by Anodic Oxidation, on Commercially Pure Titanium in Vacuum Conditions, Surf. Coat. Technol., 2010, 205, p 1757–1763. (in English)

    Article  CAS  Google Scholar 

  29. M. Abid, J. Fortes da Cruz, M. Kchaou and M. Haboussi, Micro-and Macro-Scale Characterization of the Microstructure and Scratch Resistance of the 5083-Anodic Aluminum Oxide Film, Proc. Inst. Mech. Eng. Part L J. Mater. Design Appl., 2023, 2023, p 14644207231151212. (in English)

    Google Scholar 

  30. M. Abid, A. Sellami, H. Nouri, M. Kchaou and M. Haboussi, Nano- and Micro-Scales Characterization of Anodic Oxide Layer Coating on 2017A–T4 Aluminum Alloy, Trans. Ind. Inst. Metals, 2021, 74(4), p 1001–1014. (in English)

    Article  CAS  Google Scholar 

  31. A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews and S.J. Dowey, Plasma Electrolysis for Surface Engineering, Surf. Coat. Technol., 1999, 122(2–3), p 73–93. (in English)

    Article  CAS  Google Scholar 

  32. A.A. Shatsov, I.V. Ryaposov and D.M. Larinin, Model of Fracture, Friction, and Wear Phenomena of Porous Iron, Adv. Tribol., 2011, 810254, p 16. (in English)

    Google Scholar 

  33. T. Yetim, K. Turalioğlu, M. Taftali, H. Tekdir, H. Kovaci and A.F. Yetim, Synthesis and Characterization of Wear and Corrosion Resistant Ni-Doped Al2O3 Nanocomposite Ceramic Coatings by Sol-Gel Method, Surf. Coat. Technol., 2022, 444(25), p 128659. (in English)

    Article  CAS  Google Scholar 

  34. V.F. Steier, T. Doca and J.A. Araujo, Fretting Wear Investigation of 1350-H19 Aluminum Wires Tested Against Treated Surfaces, Wear, 2018, 414–425, p 1–8. (in English)

    Article  Google Scholar 

  35. K. Turalıoglu, M. Taftal, H. Tekdir, O. Çomakl, M. Yazıcı, T. Yetim and A.F. Yetim, The Tribological and Corrosion Properties of Anodized Ti6Al4V/316L Bimetallic Structures Manufactured by Additive Manufacturing, Surf. Coat. Technol., 2021, 405, p 126635. (in English)

    Article  Google Scholar 

  36. O. Sachiko and M. Noboru, Evaluation of Pore Diameter of Anodic Porous Films Formed on Aluminum, Surf. and Coat. Tech, 2003, 169–170, p 139–142. (in English)

    Article  Google Scholar 

  37. C.K. Chung, M.W. Liao, H.C. Chang and C.T. Lee, Effects of Temperature and Voltage Mode on Nanoporous Anodic Aluminum Oxide Films by one-Step Anodization, Thin Solid Films, 2011, 520, p 1554–1558. (in English)

    Article  CAS  ADS  Google Scholar 

  38. X. Yang, L. Chen, X. Jin, J. Du and W. Xue, Influence of Temperature on Tribological Properties of Microarc Oxidation Coating on 7075 Aluminium Alloy at 25 °C–300 °C, Ceram. Int., 2019, 45, p 12312–12318. (in English)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was carried out under the MOBIDOC program, funded by the EU through the EMORI program and managed by the ANPR. The authors acknowledge the LSPM (Laboratoire des Sciences des Procédés et des Matériaux, France), LASEM (Laboratoire des Systèmes Électromécaniques, Tunisia), LGM (Laboratoire Génie Mécanique) laboratories and SUPMECA Paris (School of Mechanical and Manufacturing Engineering) Institute for the use of their instruments. Special thanks to SIAF (Société des Ingénieurs pour les Affaires, Tunisia) for providing us with the anodized aluminum samples. The authors are grateful to Dr Ovidiou Brinza from LSPM and to Dr Durata Katundi and Dr Julien Fortesdacruz from SUPMECA for their valuable assistance in performing the profilometry analyses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohamed Kchaou or Mohamed Haboussi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abid, M., Ben Abdelali, H., Kchaou, M. et al. Friction Durability of Anodized Aluminum Alloy 2017A under Dry Conditions. J. of Materi Eng and Perform 33, 1457–1471 (2024). https://doi.org/10.1007/s11665-023-08065-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08065-3

Keywords

Navigation