Skip to main content
Log in

Deformation Characteristics and Microstructure Evolution of Ti-6Al-4V Alloy with 0.31 wt.% Hydrogen

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The isothermal constant strain rate compression test of Ti-6Al-4V alloy with a hydrogen content of 0.31 wt.% was carried out on a Gleeble-1500 thermomechanical simulator. The thermal deformation behavior at temperatures of 700-950 °C and strain rates of 0.001-10 s−1 was studied. The results show that the flow stress of the alloy is sensitive to the deformation temperature and strain rate. The flow stress decreases with increasing deformation temperature and increases with increasing strain rate. Using the Arrhenius hyperbolic sine function, the constitutive equations for the Ti-6Al-4V alloy with 0.31 wt.% hydrogen in the α + β two-phasic region as well as in the β single-phase region were derived. Processing maps were established by superimposing the instability map and the power dissipation map. Compared with the Ti-6Al-4V alloy without hydrogen, the flow stress of the alloy is reduced, and the microstructure becomes refined. The β grain size increases with increasing deformation temperature. The dynamic recrystallization rate decreases with decreasing strain rate. The instability phenomena often occur at low temperatures. The instability region grows steadily with increasing strain. The alloy should be avoided in thermal processing at high strain rates (> 0.01 s−1) and low temperatures (< 800 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Peters, J. Hemptenmacher, J. Kumpfert, and C. Leyens, Structure and Properties of Titanium and Titanium Alloys, Titan. Titan. Alloys, 2003, 1, p 1–36.

    Google Scholar 

  2. O.N. Senkov, and F.H. Froes, Thermohydrogen Processing of Titanium Alloys, J. Sci. Int. J. Hydrog. Energy, 1999, 24(6), p 565–576. https://doi.org/10.1016/S0360-3199(98)00112-8

    Article  CAS  Google Scholar 

  3. Y. Zong, and K. Wu, Thermo Hydrogen Treatment for Microstructure Refinement and Mechanical Properties Improvement of Ti-6Al-4V Alloy, Mater. Sci. Eng. A, 2017, 703, p 430–437.

    Article  CAS  Google Scholar 

  4. E. Stepanova, N. Pushilina, M. Syrtanov et al., Hydrogen Effect on Ti-6.5 Al-3.5 Mo-1.5 Zr-0.3 Si Parts Produced by Electron Beam Melting, Int. J. Hydrog. Energy, 2019, 44(55), p 29380–29388.

    Article  CAS  Google Scholar 

  5. X. Liu, Y. Su, L. Luo, J. Liu, J. Guo, and H. Fu, Effect of Hydrogen on Hot Deformation Behaviors of TiAl Alloys, J. Sci. Int. J. Hydrog. Energy, 2010, 35(24), p 13322–13328. https://doi.org/10.1016/j.ijhydene.2010.09.032

    Article  CAS  Google Scholar 

  6. Y.Y. Zong, Y.C. Liang, Z.W. Yin, and D.B. Shan, Effects of Hydrogen Addition on the High Temperature Deformation Behavior of TC21 Titanium Alloy, J. Sci. Int. J. Hydrog. Energy, 2012, 37(18), p 13631–13637. https://doi.org/10.1016/j.ijhydene.2012.02.036

    Article  CAS  Google Scholar 

  7. D.B. Shan, Y.Y. Zong, Y. Lv, and B. Guo, The Effect of Hydrogen on the Strengthening and Softening of Ti-6Al-4V Alloy, J. Sci. Scripta Materialia, 2008, 58(6), p 449–452. https://doi.org/10.1016/j.scriptamat.2007.10.047

    Article  CAS  Google Scholar 

  8. O.N. Senkov, and J.J. Jonas, Effect of Phase Composition and Hydrogen Level on the Deformation Behavior of Titanium-Hydrogen Alloys, J. Sci. Metall. Mater. Trans. A, 1996, 27(7), p 1869–1876. https://doi.org/10.1007/BF02651936

    Article  ADS  Google Scholar 

  9. Y. Niu, Y.Q. Wang, J.W. Niu, and Y.C. Zhu, Flow Stress Prediction of Hydrogenated Ti6Al4V Alloy Based on Self-consistent Model, Rare Met. Mater. Eng., 2021, 51, p 2499.

    Google Scholar 

  10. J.I. Qazi, J. Rahim, F.H. Fores, O.N. Senkov, and A. Genc, Phase transformations in Ti-6Al-4V-Hx alloys, J. Sci. Metall. Mater. Trans. A, 2001, 32(10), p 2453–2463. https://doi.org/10.1007/s11661-001-0035-8

    Article  Google Scholar 

  11. J.Q. Lu. A Study on Thermohydrogen Treatment of in-situ Synthesized Titanium Matrix Composite Ph.D. Thesis, Shanghai Jiao Tong University, 2010

  12. Y.C. Lin, J. Huang, D.G. He et al., Phase Transformation and Dynamic Recrystallization Behaviors in a Ti55511 Titanium Alloy During Hot Compression, J. Alloy. Compd., 2019, 795, p 471–482.

    Article  CAS  Google Scholar 

  13. Y.Q. Jiang, Y.C. Lin, G.Q. Wang et al., Microstructure Evolution and a Unified Constitutive Model for a Ti-55511 Alloy Deformed in β Region, J. Alloy. Compd., 2021, 870, 159534.

    Article  CAS  Google Scholar 

  14. Y.W. Xiao, Y.C. Lin, Y.Q. Jiang et al., A Dislocation Density-Based Model and Processing Maps of Ti-55511 Alloy with Bimodal Microstructures During Hot Compression in α+β Region, Mater. Sci. Eng. A, 2020, 790, 139692.

    Article  CAS  Google Scholar 

  15. G. Su, Z. Yun, Y.C. Lin et al., Microstructure Evolution and a Unified Constitutive Model of Ti-55511 Alloy Compressed at Stepped Strain Rates [J/OL], Materials, 2021, 14(22), p 6750. https://doi.org/10.3390/ma14226750

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. C.M. Sellars, and W.J.M. Tegart, Hot Workability, J. Sci. Int. Metall. Rev., 1972, 17(1), p 1–24. https://doi.org/10.1179/imtlr.1972.17.1.1

    Article  CAS  Google Scholar 

  17. C. Li, L. Huang, M. Zhao, S.Q. Guo, and J.J. Li, Hot Deformation Behavior and Mechanism of a New Metastable β Titanium Alloy Ti-6Cr-5Mo-5V-4Al in Single Phase Region, J. Sci. Mater. Sci. Eng. A, 2021, 1, p 814. https://doi.org/10.1016/j.msea.2021.141231

    Article  CAS  Google Scholar 

  18. L. Zhou, Y.X. Liu, W. Chen, and M.J. Fu, Thermal Deformation Behavior and Processing Map of Ti-4Al-5Mo-6Cr-5V-1Nb Alloy, Chin. J. Rare Met., 2022, 46(1), p 27–35. https://doi.org/10.13373/j.cnki.cjrm.XY19110035

    Article  Google Scholar 

  19. J. Zhang, H. Di, H. Wang, K. Mao, T. Ma, and Y. Cao, Hot Deformation Behavior of Ti-15-3 Titanium Alloy: A Study Using Processing Maps, Activation Energy Map, and Zener-Hollomon Parameter Map, J. Sci. J. Mater. Sci., 2012, 47(9), p 4000–4011. https://doi.org/10.1007/s10853-012-6253-1

    Article  ADS  CAS  Google Scholar 

  20. J. Lu, J. Qin, W. Lu, Y. Chen, D. Zhang, and H. Hou, Hot Deformation Behavior and Microstructure Evaluation of Hydrogenated Ti-6Al-4V Matrix Composite, J. Sci. Int. J. Hydrog. Energy, 2009, 34(22), p 9266–9273. https://doi.org/10.1016/j.ijhydene.2009.09.029

    Article  CAS  Google Scholar 

  21. D.T. Pierce, D.M. Field, K.R. Limmer, T. Muth, and K.M. Sebeck, Hot Deformation Behavior of an Industrially Cast Large Grained Low Density Austenitic steel, J. Sci. Mater. Sci. Eng. A, 2021, 825, p 1. https://doi.org/10.1016/j.msea.2021.141785

    Article  CAS  Google Scholar 

  22. Y.V.R.K. Prasad, K. Rao, and S. Sasidhara, Hot Working Guide: A Compendium of Processing Maps, 2nd ed. ASM International, 2015.

    Google Scholar 

  23. L. Ma, M. Wan, W. Li et al., Constitutive Modeling and Processing Map for Hot Deformation of Ti-15Mo-3Al-2.7 Nb-0.2 Si, J. Alloys Compd., 2019, 808, p 151759.

    Article  CAS  Google Scholar 

  24. J. Luo, M. Li, W. Yu and, H. Li, Effect of the Strain on Processing Maps of Titanium Alloys in Isothermal Compression, J. Sci. Mater. Sci. Eng.: A, 2009, 504(1–2), p 90–98. https://doi.org/10.1016/j.msea.2008.10.020

    Article  CAS  Google Scholar 

  25. Y. Zong, D. Shan, Y. Lu, and B. Guo, Effect of 0.3wt%H Addition on the High Temperature Deformation Behaviors of Ti-6Al-4V Alloy, J. Sci. Int. J. Hydrog. Energy, 2007, 32(16), p 3936–3940. https://doi.org/10.1016/j.ijhydene.2007.04.032

    Article  CAS  Google Scholar 

  26. Y. Guo, Y. Fang, G. Dai, Z. Sun, Y. Wang, and Q. Yuan, The Effect of Hydrogen Treatment on Microstructures Evolution and Mechanical Properties of Titanium Alloy Fabricated by Selective Laser Melting, J. Sci. J. Alloys Compd., 2022, 890, p 1. https://doi.org/10.1016/j.jallcom.2021.161642

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the National Natural Science Foundation of China (No.52075509), the Shanxi Province Applied Basic Research Program (No. 20210302123203), Shanxi Provincial Higher Education School Science and Technology Innovation Project (No. 2020L0351), Taiyuan University of Science and Technology Doctoral Start-up Fund (Nos. 20192007, 20202050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Yaoqi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yong, N., Zhe, W., Yaoqi, W. et al. Deformation Characteristics and Microstructure Evolution of Ti-6Al-4V Alloy with 0.31 wt.% Hydrogen. J. of Materi Eng and Perform 33, 1326–1335 (2024). https://doi.org/10.1007/s11665-023-08059-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08059-1

Keywords

Navigation