Skip to main content
Log in

Sulfate-Reducing Bacteria Corrosion of Pipeline Steel in Polyacrylamide Gel Used for Enhanced Oil Recovery

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

A Correction to this article was published on 23 May 2023

This article has been updated

Abstract

Hydrolyzed polyacrylamide (HPAM), a viscosity booster in the enhanced oil recovery process, has been found to be prone to microbial degradation. The effect of HPAM degradation on the electrochemical properties and corrosion behavior of C20 steel was examined in oilfield injection water containing sulfate-reducing bacteria (SRB). Microscopic and spectroscopic analyses showed that HPAM promoted SRB growth, which resulted in the precipitation of higher amount of ferrous sulfide in the test medium. Electrochemical investigations revealed that the HPAM biodegradation enhanced the corrosion rate and localized perforation of steel. These were possible because the HPAM degradation furnished the test medium with nutrients like acetate and ammonium ions, which sustained microbial activities, thus boosting the anodic dissolution of steel.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Change history

References

  1. H. Liu and Y.F. Cheng, Mechanistic Aspects of Microbially Influenced Corrosion of X52 Pipeline Steel in a Thin Layer of Soil Solution Containing Sulphate-Reducing Bacteria under Various Gassing Conditions, Corros. Sci., 2018, 133, p 178–189.

    Article  CAS  Google Scholar 

  2. Y. Li, D. Xu, C. Chen, X. Li, R. Jia, D. Zhang, W. Sand, F. Wang and T. Gu, Anaerobic Microbiologically Influenced Corrosion Mechanisms Interpreted using Bioenergetics and Bioelectrochemistry: A Review, J. Mater. Sci. Technol., 2018, 34, p 1713–1718.

    Article  CAS  Google Scholar 

  3. T. Gu, R. Jia, T. Unsal and D. Xu, Toward a Better Understanding of Microbiologically Influenced Corrosion Caused by Sulfate Reducing Bacteria, J. Mater. Sci. Technol., 2019, 35, p 631–636.

    Article  CAS  Google Scholar 

  4. S.S. Al-Jaroudi, A. Ul-Hamid and M.M. Al-Gahtani, Failure of Crude Oil Pipeline due to Microbiologically Induced Corrosion, Corros. Eng. Sci. Technol., 2011, 46, p 568–579.

    Article  CAS  Google Scholar 

  5. R. Xiao, G. Xiao, B. Huang, J. Feng and Q. Wang, Corrosion Failure Cause Analysis and Evaluation of Corrosion Inhibitors of Ma Huining Oil Pipeline, Eng. Fail. Anal., 2016, 68, p 113–121.

    Article  CAS  Google Scholar 

  6. T.R. Lenhart, K.E. Duncan, I.B. Beech, J.A. Sunner, W. Smith, V. Bonifay, B. Biri and J.M. Suflita, Identification and Characterization of Microbial Biofilm Communities Associated with Corroded Oil Pipeline Surfaces, Biofouling, 2014, 30, p 823–835.

    Article  PubMed  Google Scholar 

  7. W. Liu, Rapid MIC Attack on 2205 Duplex Stainless Steel Pipe in a Yacht, Eng. Fail. Anal., 2014, 42, p 109–120.

    Article  CAS  Google Scholar 

  8. R. Jia, J.L. Tan, P. Jin, D.J. Blackwood, D. Xu and T. Gu, Effects of Biogenic H2S on the Microbiologically Influenced Corrosion of C1018 Carbon Steel by Sulfate Reducing Desulfovibrio Vulgaris Biofilm, Corros. Sci., 2018, 130, p 1–11.

    Article  ADS  CAS  Google Scholar 

  9. Y. Huang, E. Zhou, C. Jiang, R. Jia, S. Liu, D. Xu, T. Gu and F. Wang, Endogenous Phenazine-1-Carboxamide Encoding Gene PhzH Regulated the Extracellular Electron Transfer in Biocorrosion of Stainless Steel by Marine Pseudomonas Aeruginosa, Electrochem. Commun., 2018, 94, p 9–13.

    Article  CAS  Google Scholar 

  10. X.B. Shi, C.G. Yang, W. Yan, D.K. Xu, M.C. Yan and Y.Y. Shan, Microbiologically Influenced Corrosion of Pipeline Steels, J. Chin. Soc. Corros. Prot., 2019, 39, p 9–17.

    Google Scholar 

  11. H. Venzlaff, D. Enning, J. Srinivasan, K.J.J. Mayrhofer, A.W. Hassel, F. Widdel and M. Stratmann, Accelerated Cathodic Reaction in Microbial Corrosion of Iron due to Direct Electron Uptake by Sulfate-Reducing Bacteria, Corros. Sci., 2013, 66, p 88–96.

    Article  CAS  Google Scholar 

  12. W.W. Dou, J.L. Liu, W.Z. Cai, D. Wang, R. Jia, S.G. Chen and T.Y. Gu, Electrochemical Investigation of Increased Carbon Steel Corrosion via Extracellular Electron Transfer by a Sulfate Reducing Bacterium under Carbon Source Starvation, Corros. Sci., 2019, 150, p 258–326.

    Article  CAS  Google Scholar 

  13. M. Fani, P. Pourafshary, P. Mostaghimi and N. Mosavat, Application of Microfluidics in Chemical Enhanced Oil Recovery: A Review, Fuel, 2022, 315, p 123225.

    Article  CAS  Google Scholar 

  14. A. Mandal, Chemical Flood Enhanced Oil Recovery: A Review, Int. J. Oil Gas Coal Technol., 2015, 9, p 241–264.

    Article  CAS  Google Scholar 

  15. A. Mohan, A. Rao, J. Vancso and F. Mugele, Applied Surface Science Towards Enhanced Oil Recovery: Effects of Ionic Valency and pH on the Adsorption of Hydrolyzed Polyacrylamide at Model Surfaces using QCM-D, Appl. Surf. Sci., 2022, 560, p 149995.

    Article  Google Scholar 

  16. D. Yang, R. Jia, H. Bin, A. Rahman and T. Gu, Preliminary Investigation of Utilization of a Cellulose-based Polymer in Enhanced Oil Recovery by Oilfield Anaerobic Microbes and its Impact on Carbon Steel Corrosion, Corrosion, 2020, 76, p 1–26.

    Article  Google Scholar 

  17. H. Hu, J.L. Li and S.Y.J. Gu, Anaerobic Biodegradation of Partially Hydrolyzed Polyacrylamide in Long-term Methanogenic Enrichment Cultures from Production Water of Oil Reservoirs, Biodegradation, 2018, 29(3), p 233–243.

    Article  CAS  PubMed  Google Scholar 

  18. R. Jia, D. Yang, H. AbdRahman, G. Bin and T. Gu, An Enhanced Oil Recovery Polymer Promoted Microbial Growth and Accelerated Microbiologically Influenced Corrosion Against Carbon Steel, Corros. Sci., 2018, 139, p 301–308.

    Article  CAS  Google Scholar 

  19. F. Ma, L. Wei, L. Wang and C.C. Chang, Isolation and Identification of the Sulphate-Reducing Bacteria Strain H1 and its Function for Hydrolysed Polyacrylamide Degradation, Int. J. Biotechnol., 2008, 10, p 55–63.

    Article  Google Scholar 

  20. M. Bao, Q. Chen, Y. Li and G. Jiang, Biodegradation of Partially Hydrolyzed Polyacrylamide by Bacteria Isolated from Production Water after Polymer Flooding in an Oil Field, J. Hazard. Mater., 2010, 184, p 105–110.

    Article  CAS  PubMed  Google Scholar 

  21. T. Wu, M. Yan, L. Yu, H. Zhao, C. Sun, F. Yin and W. Ke, Stress Corrosion of Pipeline Steel under Disbonded Coating in a SRB-Containing Environment, Corros. Sci., 2019, 157, p 518–530.

    Article  CAS  Google Scholar 

  22. T. Wu, J. Xu, C. Sun, M. Yan, C. Yu and W. Ke, Microbiological Corrosion of Pipeline Steel under Yield Stress in Soil Environment, Corros. Sci., 2014, 88, p 291–305.

    Article  CAS  Google Scholar 

  23. I.I.N. Etim, J. Dong, J. Wei, C. Nan, E.F. Daniel, D. Babu Subedi, D. Xu, A. Prasad Yadav, M. Su and W. Ke, Mitigation of Sulphate-Reducing Bacteria Attack on the Corrosion of 20SiMn Steel Rebar in Sulphoaluminate Concrete using Organic Silicon Quaternary Ammonium Salt, Constr. Build. Mater., 2020, 257, p 119047.

    Article  CAS  Google Scholar 

  24. C.Y. Li, D. Zhang, X.X. Li, S.M. Mbadinga, S.Z. Yang, J.F. Liu, J.D. Gu and B.Z. Mu, The Biofilm Property and its Correlationship with High-Molecular-Weight Polyacrylamide Degradation in a Water Injection Pipeline of Daqing Oilfield, J. Hazard. Mater., 2016, 304, p 388–399.

    Article  CAS  PubMed  Google Scholar 

  25. A. Teske, C. Wawer, G. Muyzer and N.B. Ramsing, Distribution of Sulfate-Reducing Bacteria in a Stratified Fjord (Mariager Fjord, Denmark) as Evaluated by Most-Probable-Number Counts and Denaturing Gradient Gel Electrophoresis of PCR-Amplified Ribosomal DNA Fragments, Appl. Environ. Microbiol., 1996, 62(4), p 1405–1415.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Q. Wen, Z. Chen, Y. Zhao, H. Zhang and Y. Feng, Biodegradation of Polyacrylamide by Bacteria Isolated from Activated Sludge and Oil-Contaminated Soil, J. Hazard. Mater., 2010, 175(1–3), p 955–959.

    Article  CAS  PubMed  Google Scholar 

  27. G. Sang, Y. Pi, M. Bao, Y. Li and J. Lu, Biodegradation for Hydrolyzed Polyacrylamide in the Anaerobic Baffled Reactor Combined Aeration Tank, Ecol. Eng., 2015, 84, p 121–127.

    Article  Google Scholar 

  28. Y. Cai, Z. Wang, J. Zhang, Q. Li and Q. Zhang, Free Radical Induced Degradation of High Molecular Weight Partial Hydrolysis Polyacrylamide (HPAM) in a Ferrous Iron Containing System, Polym. Bull., 2022, 79(11), p 9397–9406.

    Article  CAS  Google Scholar 

  29. D. Xu and T. Gu, Carbon Source Starvation Triggered more Aggressive Corrosion Against Carbon Steel by the Desulfovibrio Vulgaris Biofilm, Int. Biodeterior. Biodegrad., 2014, 91, p 74–78.

    Article  CAS  Google Scholar 

  30. J. Xu, R. Jia, D. Yang, C. Sun and T. Gu, Effects of D-Phenylalanine as a Biocide Enhancer of THPS against the Microbiologically Influenced Corrosion of C1018 Carbon Steel, J. Mater. Sci. Technol., 2019, 35(1), p 109–117.

    Article  ADS  CAS  Google Scholar 

  31. D.B. Pokharel, L. Wu, J. Dong, A.P. Yadav, D.B. Subedi, M. Dhakal, L. Zha, X. Mu, A.J. Umoh and W. Ke, Effect of Glycine Addition on the in-vitro Corrosion Behavior of AZ31 Magnesium Alloy in Hank’s Solution, J. Mater. Sci. Technol., 2021, 81, p 97–107.

    Article  CAS  Google Scholar 

  32. I.I.N. Etim, J. Dong, J. Wei, C. Nan, D.B. Pokharel, A.J. Umoh, D. Xu, M. Su and W. Ke, Effect of Organic Silicon Quaternary Ammonium Salts on Mitigating Corrosion of Reinforced Steel Induced by SRB in Mild Alkaline Simulated Concrete Pore Solution, J. Mater. Sci. Technol., 2021, 64, p 126–140.

    Article  CAS  Google Scholar 

  33. W. Dec, M. Mosialek, R.P. Socha, M. Jaworska-Kik, W. Simka and J. Michalska, The Effect of Sulphate-Reducing Bacteria Biofilm on Passivity and Development of Pitting on 2205 Duplex Stainless Steel, Electrochem. Acta, 2016, 212, p 225–236.

    Article  CAS  Google Scholar 

  34. T. He, W. Emori, R.H. Zhang, P.C. Okafor, M. Yang and C.R. Cheng, Detailed Characterization of Phellodendron Chinense SCHNEID and its Application in the Corrosion Inhibition of Carbon Steel in Acidic Media, Bioelectrochemistry, 2019, 130, p 107332.

    Article  CAS  PubMed  Google Scholar 

  35. J. Xu, K. Wang, C. Sun, F. Wang, X. Li, J. Yang and C. Yu, The Effects of Sulfate Reducing Bacteria on Corrosion of Carbon Steel Q235 under Simulated Disbonded Coating by using Electrochemical Impedance Spectroscopy, Corros. Sci., 2011, 53, p 1554–1562.

    Article  CAS  Google Scholar 

  36. J. Chen, J. Wu, P. Wang, D. Zhang, S. Chen and F. Tan, Corrosion of 907 Steel Influenced by Sulfate-Reducing Bacteria, J. Mater. Eng. Perform., 2019, 28(3), p 1469–1479.

    Article  CAS  Google Scholar 

  37. W. Emori, R.H. Zhang, P.C. Okafor, X.W. Zheng, T. He, K. Wei, X.Z. Lin and C.R. Cheng, Adsorption and Corrosion Inhibition Performance of Multi-Phytoconstituents from Dioscorea Septemloba on Carbon Steel in Acidic Media: Characterization, Experimental and Theoretical Studies, Colloids Surf. A Physicochem. Eng. Asp., 2020, 590, p 124534.

    Article  CAS  Google Scholar 

  38. D.B. Pokharel, W. Liping, J. Dong, X. Wei, I.I.N. Etim, D.B. Subedi, A.J. Umoh and W. Ke, Effect of D-fructose on the in-vitro Corrosion Behavior of AZ31 Magnesium Alloy in Simulated Body Fluid, J. Mater. Sci. Technol., 2021, 66, p 202–212.

    Article  CAS  Google Scholar 

  39. Y. Wang, L. Yu, Y. Tang, W. Zhao, G. Wu and Y. Wang, Pitting Behavior of L245N Pipeline Steel by Microbiologically Influenced Corrosion in Shale Gas Produced Water with Dissolved CO2, J. Mater. Eng. Perform., 2022 https://doi.org/10.1007/s11665-022-07531-8

    Article  PubMed  PubMed Central  Google Scholar 

  40. I.I.N. Etim, J. Wei, J. Dong, D. Xu, N. Chen, X. Wei, M. Su and W. Ke, Mitigation of the Corrosion-Causing Desulfovibrio Desulfuricans Biofilm using an Organic Silicon Quaternary Ammonium Salt in Alkaline Media Simulated concrete Pore Solutions, Biofouling, 2018, 34(10), p 1121–1137.

    Article  CAS  PubMed  Google Scholar 

  41. L. Cui, Z. Liu, P. Hu and J. Shao, Laboratory Investigation of Microbiologically Influenced Corrosion of X80 Pipeline Steel by Sulfate-Reducing Bacteria, J. Mater. Eng. Perform., 2021, 30(10), p 7584–7596.

    Article  CAS  Google Scholar 

  42. X.R. Yu, F. Liu, Z.Y. Wang and Y. Chen, Auger Parameters for Sulfur-Containing Compounds using a Mixed Aluminum–Silver Excitation Source, J. Electron Spectrosc. Relat. Phenom., 1990, 50, p 159–166.

    Article  CAS  Google Scholar 

  43. K. Laajalehto, I. Kartio and P. Nowak, XPS Study of Clean Metal Sulfide Surfaces, Appl. Surf. Sci., 1999, 81, p 11–15.

    Article  ADS  Google Scholar 

  44. H. Peisert, T. Chassé, P. Streubel, A. Meisel and R. Szargan, Relaxation Energies in XPS and XAES of Solid Sulfur Compounds, J. Electron Spectrosc. Relat. Phenom., 1994, 68, p 321–328.

    Article  CAS  Google Scholar 

  45. R.J. Jadaa, A.N. Abd and A.A. Khadom, Polyacrylamide as a Corrosion Inhibitor for Mild Steel in 2 M Phosphoric Acid: Experimental and Theoretical Studies, Chem. Pap., 2021, 75, p 5375–5386.

    Article  CAS  Google Scholar 

  46. F. Zhi, L. Jiang, M. Jin, P. Xu, B. Xiao, Q. Jiang, L. Chen and Y. Gu, Inhibition effect and mechanism of polyacrylamide for steel corrosion in simulated concrete pore solution, Constr. Build. Mater., 2020, 259, p 120425.

    Article  CAS  Google Scholar 

  47. J. Liu, J. Feng, S. Yang, H. Gang and B. Mu, The Recovery of Viscosity of HPAM Solution in Presence of High Concentration Sulfide Ions, J. Pet. Sci. Eng., 2020, 195, p 107605.

    Article  CAS  Google Scholar 

  48. Z. Bai, K. Xiao, Q. Yao, C. Dong, D. Zhang, J. Wu and S. Zou, Microbiologically Influenced Corrosion of AA 6061 with Bacillus Species in an Environment Containing an Organic Nitrogen Source, J. Mater. Eng. Perform., 2022, 31(3), p 1870–1880.

    Article  CAS  Google Scholar 

  49. B. Liu, M. Sun, F. Lu, C. Du and X. Li, Study of Biofilm-Influenced Corrosion on X80 Pipeline Steel by a Nitrate-Reducing Bacterium, Bacillus Cereus, in Artificial Beijing Soil, Colloids Surf., B, 2021, 197, p 111356.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 52071320). The authors are grateful to Dr. Shi Wei and Dr. Paul Uzoma for their reviews and technical contributions, which was helpful in improving this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maocheng Yan.

Ethics declarations

Conflict of interest

The authors declare that there is no competing interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: In the originally published version of the article, Reaction 1 was rendered incorrectly and has been corrected.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Udowo, V.M., Gao, Q., Yan, M. et al. Sulfate-Reducing Bacteria Corrosion of Pipeline Steel in Polyacrylamide Gel Used for Enhanced Oil Recovery. J. of Materi Eng and Perform 33, 1114–1129 (2024). https://doi.org/10.1007/s11665-023-08058-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08058-2

Keywords

Navigation