Skip to main content
Log in

Hot Corrosion and Oxidation Behavior of Network Structured TiBw/TA15 Composite at 1073 K

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The hot corrosion and high temperature oxidation performance of the TiBw/TA15 composite were tested at 1073 K for up to 100 h. The final mass gain caused by the high temperature oxidation was only 16.9% of that caused by the hot corrosion, showing that the effect of hot corrosion is much larger than that of oxidation. After 100 h of high temperature oxidation testing, an approximately 50 μm-thick oxide scale formed on the substrate surface, consisting of mixed TiO2 and Al2O3 oxide. An approximately about 300 μm-thick hot corrosion scale, mainly composed of TiO2 and Al2O3 with holes and cracks, was generated after 100 h of hot corrosion testing. The change of acidity/basicity in the molten salt caused by the self-circulating sulfurization/chlorination–oxidation cycle and basic dissolution was the mean reasons for hot corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. N. Dai, L.-C. Zhang, J. Zhang et al., Corrosion Behavior of Selective Laser Melted Ti-6Al-4V Alloy in NaCl Solution, Corros. Sci., 2016, 102, p 484–489.

    Article  CAS  Google Scholar 

  2. H. Ali, H. Ghadbeigi and K. Mumtaz, Processing Parameter Effects on Residual Stress and Mechanical Properties of Selective Laser Melted Ti6Al4V, J. Mater. Eng. Perform., 2018, 27, p 4059–4068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. M. Rizwan, J.X. Lu, R. Ullah et al., Microstructural and Texture Evolution Investigation of Laser Melting Deposited TA15 Alloy at 500 °C Using In-Situ EBSD Tensile Test, Mater. Sci. Eng. A, 2022, 857, p 144062.

    Article  CAS  Google Scholar 

  4. P. Erdely, T. Schmoelzer, E. Schwaighofer et al., In Situ Characterization Techniques Based on Synchrotron Radiation and Neutrons Applied for the Development of an Engineering Intermetallic Titanium Aluminide Alloy, Metals, 2016, 6, p 10.

    Article  Google Scholar 

  5. O.M. Ivasishin, P.E. Markovsky, D.G. Savvakin et al., Multi-layered Structures of Ti-6Al-4V Alloy and TiC and TiB Composites on its Base Fabricated Using Blended Elemental Powder Metallurgy, J. Mater. Process. Technol., 2019, 269, p 172–181.

    Article  CAS  Google Scholar 

  6. S.M.R. Sedehi, M. Khosravi and Y. Yaghoubinezhad, Mechanical Properties and Microstructures of Reduced Graphene Oxide Reinforced Titanium Matrix Composites Produced By Spark Plasma Sintering and Simple Shear Extrusion, Ceram. Int., 2021, 47, p 33180–33190.

    Article  CAS  Google Scholar 

  7. K. Morsi, Review: Titanium-Titanium Boride Composites, J. Mater. Sci., 2019, 54, p 6753–6771.

    Article  CAS  ADS  Google Scholar 

  8. Z. Hashin and S. Shtrikman, A Variational Approach to the Theory of the Elastic Behaviour of Multiphase Materials, J. Mech. Phys. Solids, 1963, 11, p 127–140.

    Article  MathSciNet  ADS  Google Scholar 

  9. Y. Jiao, L. Huang and L. Geng, Progress on Discontinuously Reinforced Titanium Matrix Composites, J. Alloys Compd., 2018, 767, p 1196–1215.

    Article  CAS  Google Scholar 

  10. Y. Feng, W. Zhang, G. Cui et al., Room Temperature Tensile Fracture Characteristics of the Oriented TiB Whisker Reinforced TA15 Matrix Composites Fabricated by Pre-Sintering and Canned Extrusion, Mater. Sci. Eng. A, 2017, 707, p 40–43.

    Article  CAS  Google Scholar 

  11. Y. Feng, G. Cui, W. Zhang et al., High Temperature Tensile Fracture Characteristics of the Oriented TiB Whisker Reinforced TA15 Matrix Composites Fabricated by Pre-Sintering and Canned Extrusion, J. Alloys Compd., 2018, 738, p 164–172.

    Article  CAS  Google Scholar 

  12. S. Wang, L. Huang, S. Jiang et al., Microstructure evolution and tensile properties of as-rolled TiB/TA15 composites with network microstructure, Mater. Sci. Eng. A, 2021, 804, p 140783.

    Article  CAS  Google Scholar 

  13. R. Zhang, D. Wang, L. Huang et al., Deformation Behaviors and Microstructure Evolution of TiBw/TA15 Composite with Novel Network Architecture, J. Alloys Compd., 2017, 722, p 970–980.

    Article  CAS  Google Scholar 

  14. A. Casadebaigt, J. Hugues and D. Monceau, High Temperature Oxidation and Embrittlement at 500–600 °C of Ti-6Al-4V Alloy Fabricated by Laser and Electron Beam Melting, Corros. Sci., 2020, 175, 108875.

    Article  CAS  Google Scholar 

  15. Y. Garip, Z. Garip and O. Ozdemir, Prediction Modeling of Type-I Hot Corrosion Performance of Ti–Al–Mo-X (X=Cr, Mn) Alloys in (Na, K)2SO4 Molten Salt Mixture Environment at 900°C, J. Alloys Compd., 2020, 843, 156010.

    Article  CAS  Google Scholar 

  16. S.K. Bhattacharya, R. Sahara, S. Suzuki et al., Mechanisms of Oxidation of Pure and Si-Segregated alpha-Ti Surfaces, Appl. Surf. Sci., 2019, 463, p 686–692.

    Article  CAS  ADS  Google Scholar 

  17. X. Gong, R.R. Chen, H.Z. Fang et al., Synergistic Effect of B and Y on the Isothermal Oxidation Behavior of TiAl-Nb-Cr-V Alloy, Corros. Sci., 2018, 131, p 376–385.

    Article  CAS  Google Scholar 

  18. M. Yan, W. Xu, M.S. Dargusch et al., Review of Effect of Oxygen on Room Temperature Ductility of Titanium and Titanium Alloys, Powder Metall., 2014, 57, p 251–257.

    Article  CAS  ADS  Google Scholar 

  19. F. Pettit, Hot Corrosion of Metals and Alloys, Oxid. Met., 2011, 76, p 1–21.

    Article  CAS  Google Scholar 

  20. J. Dai, C. Sun, A. Wang et al., High Temperature Oxidation and Hot Corrosion Behaviors of Ti2AlNb Alloy at 923 K and 1023 K, Corros. Sci., 2021, 184, 109336.

    Article  CAS  Google Scholar 

  21. L.K. Wu, J.J. Wu, W.Y. Wu et al., Sol-Gel-Based Coatings for Oxidation Protection of TiAl Alloys, J. Mater. Sci., 2020, 55, p 6330–6351.

    Article  CAS  ADS  Google Scholar 

  22. K. Majchrowicz, Z. Pakiela, D. Moszczynska et al., Hot Corrosion of Ti-Re Alloys Fabricated by Selective Laser Melting, Oxid. Met., 2018, 90, p 83–96.

    Article  CAS  Google Scholar 

  23. L.K. Wu, J.J. Wu, W.Y. Wu et al., Hot Corrosion Behavior of Electrodeposited SiO2 Coating on TiAl Alloy, Corros. Sci., 2020, 174, 108827.

    Article  CAS  Google Scholar 

  24. J. Dai, N. Zhang, A. Wang et al., Microstructure and High Temperature Oxidation behavior of Ti-Al-Nb-Si Coatings on Ti-6Al-4V Alloy, J. Alloys Compd., 2018, 765, p 46–57.

    Article  CAS  Google Scholar 

  25. C. Ciszak, I. Abdallah, I. Popa et al., Degradation Mechanism of Ti-6Al-2Sn-4Zr-2Mo-Si Alloy Exposed to Solid NaCl Deposit At High Temperature, Corros. Sci., 2020, 172, 108611.

    Article  CAS  Google Scholar 

  26. L.J. Huang, Q. An, L. Geng et al., Multiscale Architecture and Superior High-Temperature Performance of Discontinuously Reinforced Titanium Matrix Composites, Adv. Mater., 2021, 33, p 2000688.

    Article  CAS  Google Scholar 

  27. S. Wang, L. Huang, S. Jiang et al., Multiplied Bending Ductility and Toughness of Titanium Matrix Composites by Laminated Structure Manipulation, Mater. Des., 2021, 197, 109237.

    Article  CAS  Google Scholar 

  28. G. Luo, J. Chen, J. Qin et al., Microstructure and Strengthening Mechanism of Boride In-Situ Reinforced Titanium Matrix Composites Prepared by Plasma Activated Sintering, Ceram. Int., 2021, 47, p 15910–15922.

    Article  CAS  Google Scholar 

  29. S. Wang, Q. An, R. Zhang et al., Microstructure Characteristics and Enhanced Properties of Network-Structured TiB/(TA15-Si) Composites Via Rolling Deformation At Different Temperatures, Mater. Sci. Eng. A, 2022, 829, p 142176.

    Article  CAS  Google Scholar 

  30. D. Wang, H. Li and W. Zheng, Oxidation Behaviors of TA15 Titanium alloy and TiBw Reinforced TA15 Matrix Composites Prepared by Spark Plasma Sintering, J. Mater. Sci. Technol., 2020, 37, p 46–54.

    Article  CAS  Google Scholar 

  31. Y.G. Liu, X.J. Xu, V. Tabie et al., Hot Corrosion Resistance of a Ti-Mo-Nb-Al-Si Titanium Matrix Composites Reinforced with in-situ TiC Prepared by Powder Metallurgy, Mater. Res. Express, 2019, 6, 126510.

    Article  CAS  ADS  Google Scholar 

  32. X. Chen, Q. An, S. Jiang et al., Revealing Anti-Oxidation Mechanisms of Titanium Composite Materials by Detailed Characterization of Scale Phase Constitutions, Corros. Sci., 2021, 192, 109845.

    Article  CAS  Google Scholar 

  33. F. Sharifi, V. Abouei, A. Alizadeh et al., The Effect of Different Heat Treatment Cycle on Hot Corrosion and Oxidation Behavior of Ti-6Al-4V, Mater. Res. Express, 2019, 6, 116599.

    Article  ADS  Google Scholar 

  34. Y. Garip and O. Ozdemir, Comparative Study of the Oxidation and hot Corrosion Behaviors of TiAl-Cr Intermetallic Alloy Produced by Electric Current Activated Sintering, J. Alloys Compd., 2019, 780, p 364–377.

    Article  CAS  Google Scholar 

  35. W.-J. Cheng and C.-J. Wang, High-Temperature Oxidation Behavior of Hot-Dipped Aluminide Mild Steel with Various Silicon Contents, Appl. Surf. Sci., 2013, 274, p 258–265.

    Article  CAS  ADS  Google Scholar 

  36. Z. Liu, J. Yang, Y. Qian et al., High Temperature Oxidation Behavior Of Quaternary Ordered (Cr2/3Ti1/3)3AlC2-Based MAX Ceramic, Corros. Sci., 2021, 183, 109317.

    Article  CAS  Google Scholar 

  37. C. Li, Y. Qian, C. Ma et al., Suppressing the Anomalous Rapid Oxidation of Ti3AlC2 by Incorporating TiB2, J. Mater. Sci. Technol., 2019, 35, p 432–439.

    Article  CAS  Google Scholar 

  38. R. Swadźba and P.-P. Bauer, Microstructure Formation and High Temperature Oxidation Behavior of Ti-Al-Cr-Y-Si Coatings on TiAl, Appl. Surf. Sci., 2021, 562, 150191.

    Article  Google Scholar 

  39. H. Tian, K. Zhou, Y.C. Zou et al., Microstructure and High Temperature Oxidation Resistance Property of Packing Al Cementation on Ti-Al-Zr Alloy, Surf. Coat. Technol., 2019, 374, p 1051–1058.

    Article  CAS  Google Scholar 

  40. X.T. Li, L.J. Huang, S.L. Wei et al., Cycle Oxidation Behavior and Anti-Oxidation Mechanism of Hot-Dipped Aluminum Coating on TiBw/Ti6Al4V Composites with Network Microstructure, Sci. Rep., 2018, 8, p 5790.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  41. H.P. Lim, W.Y.H. Liew, G.J.H. Melvin et al., A Short Review on the Phase Structures Oxidation Kinetics, and Mechanical Properties of Complex Ti-Al Alloys, Materials, 2021, 14, p 1677.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  42. Y. He, Z. Li, H. Qi et al., Standard Free Energy Change of Formation Per Unit Volume: A New Parameter For Evaluating Nucleation and Growth of Oxides, Sulphides, Carbides and Nitrides, Mater. Res Innovations, 1997, 1, p 157–160.

    Article  CAS  ADS  Google Scholar 

  43. J. Dai, J. Zhu, C. Chen et al., High Temperature Oxidation Behavior and Research Status of Modifications on Improving high Temperature Oxidation Resistance of Titanium Alloys and Titanium Aluminides: A Review, J. Alloys Compd., 2016, 685, p 784–798.

    Article  CAS  Google Scholar 

  44. S. Wang, F. Xie, X. Wu et al., Microstructure and High Temperature Oxidation Behavior of the Al2O3 CPED Coating on TiAl Alloy, J. Alloys Compd., 2020, 828, 154271.

    Article  CAS  Google Scholar 

  45. W. Guo, H. Wang, P. Peng et al., Effect of Laser Shock Processing on Oxidation Resistance of Laser Additive Manufactured Ti6Al4V Titanium Alloy, Corros. Sci., 2020, 170, 108655.

    Article  CAS  Google Scholar 

  46. M. Anuwar, R. Jayaganthan, V.K. Tewari et al., A Study on the Hot Corrosion Behavior of Ti-6Al-4V Alloy, Mater. Lett., 2007, 61, p 1483–1488.

    Article  CAS  Google Scholar 

  47. G.A. El-Awadi, S. Abdel-Samad and E.S. Elshazly, Hot Corrosion Behavior of Ni Based Inconel 617 and Inconel 738 Superalloys, Appl. Surf. Sci., 2016, 378, p 224–230.

    Article  CAS  ADS  Google Scholar 

  48. L. Fan, L. Liu, Y. Cui et al., Effect of Streaming Water Vapor on the Corrosion Behavior of Ti60 Alloy Under a Solid NaCl deposit in Water Vapor at 600 Degrees C, Corros. Sci., 2019, 160, 108177.

    Article  CAS  Google Scholar 

  49. C. Ciszak, I. Popa, J.M. Brossard et al., NaCl Induced Corrosion of Ti-6Al-4V Alloy at High Temperature, Corros. Sci., 2016, 110, p 91–104.

    Article  CAS  Google Scholar 

  50. H. Wang, X.J. Xu, Y.G. Liu et al., Effect of SiC Content on Hot Corrosion Resistance of TiC and Ti5Si3 Reinforced Ti-Al-Sn-Zr Titanium Matrix Composites, J. Mater. Eng. Perform., 2021, 30, p 2439–2448.

    Article  CAS  Google Scholar 

  51. M. Dadé, V.A. Esin, L. Nazé et al., Short- and Long-Term Oxidation Behaviour of an Advanced Ti2AlNb Alloy, Corros. Sci., 2019, 148, p 379–387.

    Article  Google Scholar 

  52. T.T. Ai, F. Wang and X.M. Feng, Oxidation Behavior of In-Situ Al2O3/TiAl Composites at 900 Degrees C in Static Air, Int. J. Min. Met. Mater., 2009, 16, p 339–344.

    Article  CAS  Google Scholar 

  53. J. Xiang, F. Xie, X. Wu et al., Comparative Investigation of Oxidation Behavior and Hot Corrosion Behavior in NaCl–Na2SO4 Mixture for a Ti2AlNb Based Alloy at 1023 K, Intermetallics, 2021, 132, 107151.

    Article  CAS  Google Scholar 

  54. J. He, X. Guo and Y. Qiao, Microstructure Evolution and Hot Corrosion Behavior of Zr-Y Modified Silicide Coating Prepared by Two-Step Process, Corros. Sci., 2019, 156, p 44–57.

    Article  CAS  Google Scholar 

  55. W. Wang and C. Zhou, Hot Corrosion Behaviour of Nbss/Nb5Si3 in situ Composites in the Mixture of Na2SO4 and NaCl Melts, Corros. Sci., 2013, 74, p 345–352.

    Article  CAS  Google Scholar 

  56. M. Mitoraj-Królikowska and E. Godlewska, Hot Corrosion Behaviour of (γ+α2)-Ti-46Al-8Nb (at.%) and α-Ti-6Al-1Mn (at.%) Alloys, Corros. Sci., 2017, 115, p 18–29.

    Article  Google Scholar 

  57. Y. Garip and O. Ozdemir, Corrosion Behavior of the Resistance Sintered TiAl Based Intermetallics Induced by Two Different Molten Salt Mixture, Corros. Sci., 2020, 174, 108819.

    Article  CAS  Google Scholar 

  58. Z. Sun, W. Wu, Y. Chen et al., Microstructure Characterization and Hot Corrosion Mechanism of As-Cast and Heat Treated High Nb Containing TiAl Alloy, Corros. Sci., 2021, 185, 109399.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project is supported by National Natural Science Foundation of China (No. 51875122).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guofeng Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, Q., Xu, X., Wang, G. et al. Hot Corrosion and Oxidation Behavior of Network Structured TiBw/TA15 Composite at 1073 K. J. of Materi Eng and Perform 33, 1156–1168 (2024). https://doi.org/10.1007/s11665-023-08045-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08045-7

Keywords

Navigation