Skip to main content
Log in

Correlation of Alpha Phase and Its Texture Stability in Heat-Treated Ti-6.5%Al-4.4%V-0.15%Fe Alloy

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present work, microstructure, texture, and mechanical properties were investigated for the heat-treated two-phase (α + β) titanium alloy samples. Ti-6.5%Al-4.4%V-0.15%Fe alloy samples were heated to three different temperatures (850, 930, and 1066 °C) followed by oil quenching (OQ), air cooling (AC), and furnace cooling (FC), respectively. Primary alpha (αP) and secondary alpha (αS) were dominant in the microstructure, when heat-treated below βT (beta-transus) temperature, i.e., 850 and 930 °C. Widmanstatten α (αWS) and basket-weave α (αBW) were dominant features in the microstructure of the samples heat-treated above the βT, i.e., 1066 °C. Formation of the martensite (α′) was observed in all three cases of the OQ samples. Differences in the volume fraction of the αP and αS were observed in the microstructure due to differences in the heating temperature and cooling rate. Texture developments after heat treatment were measured through the electron back-scatter diffraction (EBSD) technique. Variation in the texture intensity values was observed in the samples heat-treated below the βT which shows the dependence of the texture on the volume fraction of αP and αS. Similarly, formation of the big α colonies causes the changes in the texture when heat-treated above the βT. Grain partitioning of αP and αS in 850 and 930 °C-OQ samples shows a similar type of the texture for both the phases, difference being in the intensity of the texture fibers. Martensite (α′) formation during OQ increased the microhardness, whereas coarsening of grains during FC decreased the microhardness of the samples. There was ~ 23% variation in the modulus of elasticity (E), which depended on the heating temperature and cooling rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S.L. Semiatin, S.L. Knisley, P.N. Fagin, D.R. Barker and F. Zhang, Microstructure Evolution during Alpha-Beta Heat Treatment of Ti-6Al-4V, Metall. Mater. Trans. A, 2003, 34(10), p 2377–2386. https://doi.org/10.1007/s11661-003-0300-0

    Article  Google Scholar 

  2. A. Gupta, R.K. Khatirkar, T. Dandekar and D. Mahadule, Texture Development during Multi-Step Cross Rolling of a β Titanium Alloy: Experiments and Simulations, J. Alloys Compd., 2021, 850, p 156824. https://doi.org/10.1016/j.jallcom.2020.156824

    Article  CAS  Google Scholar 

  3. D. Mahadule, R.K. Khatirkar, S.K. Gupta, A. Gupta and T.R. Dandekar, Microstructure Evolution and Corrosion Behaviour of a High Mo Containing α + β Titanium Alloy for Biomedical Applications, J. Alloys Compd., 2022, 912, p 165240. https://doi.org/10.1016/j.jallcom.2022.165240

    Article  CAS  Google Scholar 

  4. A. Lenain, N. Clément, M. Véron and P.J. Jacques, Characterization of the α Phase Nucleation in a Two-Phase Metastable β Titanium Alloy, J. Mater. Eng. Perform., 2005, 14(6), p 722–727.

    Article  CAS  Google Scholar 

  5. A. Gupta, R.K. Khatirkar, A. Kumar, K. Thool, N. Bibhanshu and S. Suwas, Microstructure and Texture Development in Ti-15V-3Cr-3Sn-3Al Alloy—Possible Role of Strain Path, Mater. Charact., 2019, 156, p 1098845.

    Article  Google Scholar 

  6. R. Dąbrowski, The Kinetics of Phase Transformations during Continuous Cooling of the Ti6Al4V Alloy from the Single-Phase β Range, Arch. Metall. Mater., 2011, 56(3), p 703–707.

    Article  Google Scholar 

  7. A. Gupta, R.K. Khatirkar, A. Kumar and M.S. Parihar, Investigations on the Effect of Heating Temperature and Cooling Rate on Evolution of Microstructure in an α + β Titanium Alloy, J. Mater. Res., 2018, 33(8), p 946–957.

    Article  CAS  Google Scholar 

  8. D. Mahadule, R.K. Khatirkar, A. Gupta and R. Kumar, Effect of Heating Temperature and Cooling Rate on the Microstructure and Mechanical Properties of a Mo-Rich Two Phase α + β Titanium Alloy, J. Mater. Res., 2021, 36(3), p 751–763. https://doi.org/10.1557/s43578-020-00100-6

    Article  CAS  Google Scholar 

  9. P. Pinke, L. Caplovic, and T. Kovacs, The Influence of Heat Treatment on the Microstructure of the Casted Ti-6Al-4V Titanium Alloy, Slovak Univ. Technol. Bratislava. Web, 2011, 11

  10. S.M. Abbasi and A. Momeni, Effect of Hot Working and Post-Deformation Heat Treatment on Microstructure and Tensile Properties of Ti-6Al-4V Alloy, Trans. Nonferrous Met. Soc. China, 2011, 21(8), p 1728–1734.

    Article  CAS  Google Scholar 

  11. A. Gupta, R.K. Khatirkar, T. Dandekar, J.S. Jha and S. Mishra, Recrystallization Behavior of a Cold Rolled Ti-15V-3Sn-3Cr-3Al Alloy, J. Mater. Res., 2019, 34(18), p 3082–3092.

    Article  CAS  Google Scholar 

  12. S. Kumar Sahoo and P. Chandra Mishra, Recrystallization Textures in HCP Metals Surjyakant Panda Recrystallization Textures in HCP Metals Surjyakant Panda Recrystallization Textures in HCP Metals Surjyakant Panda (2016)

  13. S. Suwas and A.K. Singh, Textural Changes during Beta-Alpha and Alpha-Beta-Alpha Transformations in a Near-Alpha Titanium Alloy, Metall. Mater. Trans. A, 2004, 35A, p 925.

    Article  CAS  Google Scholar 

  14. T. Karthikeyan, A. Dasgupta, R. Khatirkar, S. Saroja, I. Samajdar and M. Vijayalakshmi, Effect of Cooling Rate on Transformation Texture and Variant Selection during Β→α Transformation in Ti–5Ta–1.8Nb Alloy, Mater. Sci. Eng. A, 2010, 528(2), p 549–558. https://doi.org/10.1016/j.msea.2010.09.055

    Article  CAS  Google Scholar 

  15. A.W. Bowen, Texture Stability in Heat Treated Ti6Al4V, Mater. Sci. Eng., 1977, 29(1), p 19–28.

    Article  CAS  Google Scholar 

  16. K.T. Ramesh, Effects of High Rates of Loading on the Deformation Behavior and Failure Mechanisms of Hexagonal Close-Packed Metals and Alloys, Metall. Mater. Trans. A, 2002, 33(13), p 927–935. https://doi.org/10.1007/s11661-002-1025-1

    Article  Google Scholar 

  17. D. Grandemange and Y. Combres, Effect of the Morphology of the Primary Alpha Phase on the Mechanical Properties of Beta-CEZ Alloy. Int. Nuclear Inf. Syst., (1993) p 164–165

  18. R. Sahoo, B.B. Jha and T.K. Sahoo, Effect of Primary Alpha Phase Variation on Mechanical Behaviour of Ti–6Al–4V Alloy, Mater. Sci. Technol., 2015, 31(12), p 1486–1494. https://doi.org/10.1179/1743284714Y.0000000736

    Article  CAS  Google Scholar 

  19. Z.B. Zhao, Q.J. Wang, J.R. Liu and R. Yang, Effect of Heat Treatment on the Crystallographic Orientation Evolution in a Near-α Titanium Alloy Ti60, Acta Mater., 2017, 131, p 305–314. https://doi.org/10.1016/j.actamat.2017.04.007

    Article  CAS  Google Scholar 

  20. M. Chen, S. Van Petegem, Z. Zou, M. Simonelli, Y.Y. Tse, C.S.T. Chang, M.G. Makowska, D.F. Sanchez, and H. Moens-Van Swygenhoven, Microstructural Engineering of a Dual-Phase Ti-Al-V-Fe Alloy via in Situ Alloying during Laser Powder Bed Fusion. Addit. Manuf., 2022, 59: 103173, doi:https://doi.org/10.1016/j.addma.2022.103173.

  21. B. Cherukuri, R. Srinivasan, S. Tamirisakandala and D.B. Miracle, The Influence of Trace Boron Addition on Grain Growth Kinetics of the Beta Phase in the Beta Titanium Alloy Ti–15Mo–2.6Nb–3Al–0.2Si, Scr. Mater., 2009, 60(7), p 496–499. https://doi.org/10.1016/j.scriptamat.2008.11.040

    Article  CAS  Google Scholar 

  22. A.M. Vilardell, I. Yadroitsev, I. Yadroitsava, M. Albu, N. Takata, M. Kobashi, P. Krakhmalev, D. Kouprianoff, G. Kothleitner and A. du Plessis, Manufacturing and Characterization of In-Situ Alloyed Ti6Al4V(ELI)-3 at.% Cu by Laser Powder Bed Fusion, Addit. Manuf., 2020, 36, p 101436.

    CAS  Google Scholar 

  23. M. Simonelli, D.G. McCartney, P. Barriobero-Vila, N.T. Aboulkhair, Y.Y. Tse, A. Clare and R. Hague, The Influence of Iron in Minimizing the Microstructural Anisotropy of Ti-6Al-4V Produced by Laser Powder-Bed Fusion, Metall. Mater. Trans. A, 2020, 51(5), p 2444–2459. https://doi.org/10.1007/s11661-020-05692-6

    Article  CAS  Google Scholar 

  24. S.L. Semiatin and T.R. Bieler, The Effect of Alpha Platelet Thickness on Plastic Flow during Hot Working of Ti-6Al-4V with a Transformed Microstructure, Acta Mater., 2001, 49(17), p 3565–3573.

    Article  CAS  Google Scholar 

  25. S.L. Semiatin, S.L. Knisley, P.N. Fagin, F. Zhang and D.R. Barker, Microstructure Evolution during Alpha-Beta Heat Treatment of Ti-6Al-4V, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2003, 34(10), p 2377–2386.

    Article  Google Scholar 

  26. B.D. Venkatesh, D.L. Chen and S.D. Bhole, Effect of Heat Treatment on Mechanical Properties of Ti-6Al-4V ELI Alloy, Mater. Sci. Eng. A, 2009, 506(1–2), p 117–124.

    Article  Google Scholar 

  27. L.E. Murr, S.A. Quinones, S.M. Gaytan, M.I. Lopez, A. Rodela, E.Y. Martinez, D.H. Hernandez, E.Y. Martinez, F. Medina and R.B. Wicker, Microstructure and Mechanical Behavior of Ti-6Al-4V Produced by Rapid-Layer Manufacturing, for Biomedical Applications, J. Mech. Behav. Biomed. Mater., 2009, 2(1), p 20–32. https://doi.org/10.1016/j.jmbbm.2008.05.004

    Article  CAS  Google Scholar 

  28. H.G. Hanumantharaju, H.K. Shivananda, M.G. Hadimani, K.S. Kumar and S.P. Jagadish, Wear Study on SS316L, Ti-6Al-4V, PEEK, Polyurethane and Alumina Used as Bio-Material, Int. J. Emerg. Technol. Adv. Eng., 2012, 2(9), p 5–9.

    Google Scholar 

  29. P. Aliprandi, F. Giudice, E. Guglielmino and A. Sili, Tensile and Creep Properties Improvement of Ti-6Al-4V Alloy Specimens Produced by Electron Beam Powder Bed Fusion Additive Manufacturing, Metals (Basel), 2019, 9(11), p 1–22.

    Article  Google Scholar 

  30. M. Benedetti and V. Fontanari, The Effect of Bi-Modal and Lamellar Microstructures of Ti-6Al-4V on the Behaviour of Fatigue Cracks Emanating from Edge-Notches, Fatigue Fract. Eng. Mater. Struct., 2004, 27(11), p 1073–1089.

    Article  CAS  Google Scholar 

  31. C. Republic, M.E. Faculty, and M. Viteazul, Cavitation Erosion Behaviour of Heat Treated Ti-6Al-4V Alloy, Metals, (2012), p 1–6

  32. S. Balachandran, S. Kumar and D. Banerjee, On Recrystallization of the α and β Phases in Titanium Alloys, Acta Mater., 2017, 131, p 423–434. https://doi.org/10.1016/j.actamat.2017.04.008

    Article  CAS  Google Scholar 

  33. Y. Wu, H. Kou, Z. Wu, B. Tang and J. Li, Dynamic Recrystallization and Texture Evolution of Ti-22Al-25Nb Alloy during Plane-Strain Compression, J. Alloys Compd., 2018, 749, p 844–852. https://doi.org/10.1016/j.jallcom.2018.03.372

    Article  CAS  Google Scholar 

  34. B. Guo, S.L. Semiatin and J.J. Jonas, Dynamic Transformation during the High Temperature Deformation of Two-Phase Titanium Alloys, Mater. Sci. Eng. A, 2019, 761, p 138047. https://doi.org/10.1016/j.msea.2019.138047

    Article  CAS  Google Scholar 

  35. W. Chen, Y. Lv, X. Zhang, C. Chen, Y.C. Lin and K. Zhou, Comparing the Evolution and Deformation Mechanisms of Lamellar and Equiaxed Microstructures in near β-Ti Alloys during Hot Deformation, Mater. Sci. Eng. A, 2019, 758, p 71–78. https://doi.org/10.1016/j.msea.2019.05.015

    Article  CAS  Google Scholar 

  36. O.M. Ivasishin, S.L. Semiatin, P.E. Markovsky, S.V. Shevchenko and S.V. Ulshin, Grain Growth and Texture Evolution in Ti-6Al-4V during Beta Annealing under Continuous Heating Conditions, Mater. Sci. Eng. A, 2002, 337(1–2), p 88–96.

    Article  Google Scholar 

  37. T. Ahmed and H.J. Rack, Phase Transformations during Cooling in Alpha + Beta Titanium Alloys, Mater. Sci. Eng. A, 1998, 243, p 206–211.

    Article  Google Scholar 

  38. P. Homporová, C. Poletti, M. Stockinger, and F. Warchomicka, Dynamic Phase Evolution in Titanium Alloy Ti-6Al-4V. In: 12th World conference on titanium, Beijing, China; Zhou, L, (2011) p 19–42

  39. M. Meng, H. Yang, X.G. Fan, S.L. Yan, A.M. Zhao and S. Zhu, On the Modeling of Diffusion-Controlled Growth of Primary Alpha in Heat Treatment of Two-Phase Ti-Alloys, J. Alloys Compd., 2017, 691, p 67–80.

    Article  CAS  Google Scholar 

  40. N. Gey, M. Humbert and H. Moustahfid, Study of the αβ Phase Transformation of a Ti-6Al-4V Sheet by Means of Texture Change, Scr. Mater., 2000, 42(6), p 525–530.

    Article  CAS  Google Scholar 

  41. N. Stefansson and S.L. Semiatin, Mechanisms of Globularization of Ti-6Al-4V during Static Heat Treatment, Metall. Mater. Trans. A, 2003, 34(March), p 691–698.

    Article  Google Scholar 

  42. Y.N. Wang and J.C. Huang, Texture Analysis in Hexagonal Materials, Mater. Chem. Phys., 2003, 81(1), p 11–26. https://doi.org/10.1016/S0254-0584(03)00168-8

    Article  CAS  Google Scholar 

  43. H. Hu, Texture of Metals, Texture, 1974, 1(4), p 233–258.

    Article  CAS  Google Scholar 

  44. H. Jiang, P. Dong, S. Zeng and B. Wu, Effects of Recrystallization on Microstructure and Texture Evolution of Cold-Rolled Ti-6Al-4V Alloy, J. Mater. Eng. Perform., 2016, 25(5), p 1931–1938.

    Article  CAS  Google Scholar 

  45. H. Moustahfid and N. Gey, Study of the β-α Phase Transformations of a Ti-64 Sheet Induced from a High-Temperature β State and a High-Temperature Α+ β State, Metall. Mater. Trans. A, 1997, 28, p 51–61. https://doi.org/10.1007/s11661-997-0082-x

    Article  Google Scholar 

  46. D. Bhattacharyya, G.B. Viswanathan, S.C. Vogel, D.J. Williams, V. Venkatesh and H.L. Fraser, A Study of the Mechanism of α to β Phase Transformation by Tracking Texture Evolution with Temperature in Ti-6Al-4V Using Neutron Diffraction, Scr. Mater., 2006, 54(2), p 231–236.

    Article  CAS  Google Scholar 

  47. S. Roy and S. Suwas, Unique Texture Transition during Sub β-Transus Annealing of Warm-Rolled Ti-6Al-4V Alloy: Role of Orientation Dependent Spheroidization, Scr. Mater., 2018, 154, p 1–7. https://doi.org/10.1016/j.scriptamat.2018.05.005

    Article  CAS  Google Scholar 

  48. Y.T. Lee and G. Welsch, Young’s Modulus and Damping of Ti-6AI-4V Alloy as a Function of Heat Treatment and Oxygen Concentration, Mater. Sci. Eng., 1990, 128, p 128–177.

    Article  Google Scholar 

  49. W.D. Zhang, Y. Liu, H. Wu, M. Song, T.Y. Zhang, X.D. Lan and T.H. Yao, Elastic Modulus of Phases in Ti-Mo Alloys, Mater. Charact., 2015, 106, p 302–307. https://doi.org/10.1016/j.matchar.2015.06.008

    Article  CAS  Google Scholar 

  50. S.B. Gabriela, J. Dillec, C.A. Nunesd and G.A. De Soaresa, The Effect of Niobium Content on the Hardness and Elastic Modulus of Heat-Treated Ti-10Mo-Xnb Alloys, Mater. Res., 2010, 13(3), p 333–337.

    Article  Google Scholar 

  51. E.A. Trofimov, R.Y. Lutfullin and R.M. Kashaev, Elastic Properties of the Titanium Alloy Ti-6Al-4V, Lett. Mater., 2015, 5(1), p 67–69.

    Article  Google Scholar 

  52. S. El-Hadad, M. Nady, W. Khalifa and A. Shash, Influence of Heat Treatment Conditions on the Mechanical Properties of Ti–6Al–4V Alloy, Can. Metall. Q., 2018, 57(2), p 186–193.

    Article  CAS  Google Scholar 

  53. G. Lütjering and J.C. Williams, “Titanium,” Engineering Materials and Processes, 2nd ed. Springer, Berlin, 2007.

    Google Scholar 

  54. P. Yadav and K.K. Saxena, Effect of Heat-Treatment on Microstructure and Mechanical Properties of Ti Alloys: An Overview, Mater. Today Proc., 2019, 26, p 2546–2557. https://doi.org/10.1016/j.matpr.2020.02.541

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the use of National Facility for Texture and OIM (A DST-IRPHA project), IIT Bombay for EBSD measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aman Gupta or Rajesh Kisni Khatirkar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A., Shankar, G., Mahadule, D. et al. Correlation of Alpha Phase and Its Texture Stability in Heat-Treated Ti-6.5%Al-4.4%V-0.15%Fe Alloy. J. of Materi Eng and Perform 32, 9599–9613 (2023). https://doi.org/10.1007/s11665-023-07811-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-07811-x

Keywords

Navigation