Skip to main content
Log in

Ce Effects on Dynamic Recrystallization of Cu-Fe-Ti-Mg Alloys Due to Hot Compression

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study researched how Ce addition affects the microstructure and mechanical behavior of Cu-Fe-Ti-Mg alloys during hot compression. A thermal deformation simulation machine was used to study the hot compression process at 0.001-10 s−1 strain rates and 500-950 °C deformation temperatures. The true stress–strain curves and constitutive equations were obtained for the two alloys. Based on the electron backscatter diffraction analysis, the addition of Ce can improve the dislocation density and texture strength of the Cu-Fe-Ti-Mg alloy. The microstructure and precipitates of the Cu-Fe-Ti-Mg-Ce alloy were also analyzed. The average grain size of the Cu-Fe-Ti-Mg-Ce alloy is smaller than the Cu-Fe-Ti-Mg alloy. The addition of Ce delayed dynamic recrystallization. These findings provide a theoretical foundation for understanding the Ce addition effects on the hot deformation behavior of the Cu-Fe-Ti-Mg alloy, serving as a reference for industrial manufacturing of the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. X.H. Zhang, Y. Zhang, B.H. Tian, K.X. Song, P. Liu, Y.L. Jia, X.H. Chen, J.C. An, Z. Zhao, and Y. Liu, Review of Nano-phase Effects in High Strength and Conductivity Copper Alloys, Nanotechnol. Rev., 2019, 8, p 383–395.

    Article  CAS  Google Scholar 

  2. H.Y. Yang, K.Q. Li, Y.Q. Bu, J.M. Wu, Y.T. Fang, L. Meng, J.B. Liu, and H.T. Wang, Nanoprecipitates Induced Dislocation Pinning and Multiplication Strategy for Designing High Strength, Plasticity and Conductivity Cu Alloys, Scripta Mater., 2021, 195, p 113741.

    Article  CAS  Google Scholar 

  3. Z.L. Zhao, Z. Xiao, Z. Li, W.T. Qiu, H.Y. Jiang, Q. Lei, Z.R. Liu, Y.B. Jiang, and S.J. Zhang, Microstructure and Properties of a Cu-Ni-Si-Co-Cr Alloy with High Strength and High Conductivity, Mater. Sci. Eng. A, 2019, 759, p 396–403.

    Article  CAS  Google Scholar 

  4. X.H. Zhang, Y. Zhang, B.H. Tian, Y.L. Jia, Y. Liu, and K.X. Song, Cr effects on the Electrical Contact Properties of the Al2O3-Cu/15W Composites, Nanotechnol. Rev., 2019, 8, p 128–135.

    Article  CAS  Google Scholar 

  5. K.X. Song, Y.F. Geng, Y.J. Ban, Y. Zhang, Z. Li, X.J. Mi, J. Cao, Y.J. Zhou, and X.B. Zhang, Effects of Strain Rates on Dynamic Deformation Behavior of Cu-20Ag Alloy, J. Mater. Sci. Technol., 2021, 79, p 75–87.

    Article  CAS  Google Scholar 

  6. I. Batra, G. Dey, U. Kulkarni, and S. Banerjee, Precipitation in a Cu-Cr-Zr Alloy, Mater. Sci. Eng. A, 2003, 356, p 32–36.

    Article  Google Scholar 

  7. A. Chbihi, X. Sauvage, and D. Blavette, Atomic Scale Investigation of Cr Precipitation in Copper, Acta Mater., 2012, 60, p 4575–4585.

    Article  CAS  Google Scholar 

  8. G. Yang, Z. Li, Y. Yuan, and Q. Lei, Microstructure, Mechanical Properties and Electrical Conductivity of Cu-0.3 Mg-0.05 Ce Alloy Processed by Equal Channel Angular Pressing and Subsequent Annealing, J. Alloys Compd., 2015, 640, p 347–354.

    Article  CAS  Google Scholar 

  9. C.D. Xia, Y.L. Jia, W. Zhang, K. Zhang, Q.Y. Dong, G.Y. Xu, and M.P. Wang, Study of Deformation and Aging Behaviors of a Hot Rolled–Quenched Cu-Cr-Zr-Mg-Si Alloy during Thermomechanical Treatments, Mater. Des., 2012, 39, p 404–409.

    Article  CAS  Google Scholar 

  10. G.D. Shi, X.H. Chen, H. Jiang, Z.D. Wang, H. Tang, and Y.Q. Fan, Strengthening Mechanisms of Fe Nanoparticles for Single Crystal Cu-Fe Alloy, Mater. Sci. Eng. A, 2015, 636, p 43–47.

    Article  CAS  Google Scholar 

  11. D.P. Lu, J. Wang, W.J. Zeng, Y. Liu, L. Lu, and B.D. Sun, Study on High-Strength and High-Conductivity Cu-Fe-P Alloys, Mater. Sci. Eng. A, 2006, 421, p 254–259.

    Article  Google Scholar 

  12. B.J. Wang, Y. Zhang, B.H. Tian, V. Yakubov, J.C. An, A.A. Volinsky, Y. Liu, K.X. Song, L.H. Li, and M. Fu, Effects of Ce and Y Addition on Microstructure Evolution and Precipitation of Cu-Mg alloy Hot Deformation, J. Alloy. Compd., 2019, 781, p 118–130.

    Article  CAS  Google Scholar 

  13. L. Zhang, Z. Li, Q. Lei, W.T. Qiu, and H.T. Luo, Hot Deformation Behavior of Cu-8.0 Ni-1.8 Si–0.15 Mg Alloy, Mater. Sci. Eng. A, 2011, 528, p 1641–1647.

    Article  Google Scholar 

  14. H. Zhang, H.G. Zhang, and L.X. Li, Hot Deformation Behavior of Cu-Fe-P Alloys during Compression at Elevated Temperatures, J. Mater. Process. Technol., 2009, 209, p 2892–2896.

    Article  CAS  Google Scholar 

  15. C. Zhao, Z. Wang, D.X. Li, D.Q. Pan, B.M. Lou, Z.Q. Luo, and W.W. Zhang, Optimization of Strength and Ductility in an As-Extruded Cu-15Ni-8Sn Alloy by the Additions of Si and Ti, J. Alloy. Compd., 2020, 823, p 153759.

    Article  CAS  Google Scholar 

  16. Y.J. Ban, Y. Zhang, Y.L. Jia, B.H. Tian, and X. Li, Effects of Cr Addition on the Constitutive Equation and Precipitated Phases of Copper Alloy during Hot Deformation, Mater. Des., 2020, 191, p 108613.

    Article  CAS  Google Scholar 

  17. Y.F. Geng, X. Li, H.L. Zhou, Y. Zhang, Y.L. Jia, B.H. Tian, Y. Liu, A.A. Volinsky, X.H. Zhang, and K.X. Song, Effect of Ti Addition on Microstructure Evolution and Precipitation in Cu-Co-Si Alloy during Hot Deformation, J. Alloy. Compd., 2020, 821, p 153518.

    Article  CAS  Google Scholar 

  18. P.H. Geng, G.L. Qin, J. Zhou, T.Y. Li, and N.S. Ma, Characterization of Microstructures and Hot-Compressive Behavior of GH4169 Superalloy by Kinetics Analysis and Simulation, J. Mater. Process. Technol., 2021, 288, p 116879.

    Article  CAS  Google Scholar 

  19. P.F. Yang, M. Zhou, Y. Zhang, Y.L. Jia, B.H. Tian, Y. Liu, X. Li, and A.A. Volinsky, Effect of Y Addition on Microstructure Evolution and Precipitation of Cu-Co-Si Alloy during Hot Deformation, Mater. Charact., 2021, 181, p 111502.

    Article  CAS  Google Scholar 

  20. K.M. Liu, Z.Y. Jiang, H.T. Zhou, D.P. Lu, A. Atrens, and Y.L. Yang, Effect of Heat Treatment on the Microstructure and Properties of Deformation-Processed Cu-7Cr In Situ Composites, J. Mater. Eng. Perform., 2015, 24, p 4340–4345.

    Article  CAS  Google Scholar 

  21. C. Roucoules, M. Pietrzyk, and P. Hodgson, Analysis of Work Hardening and Recrystallization during the Hot Working of Steel Using a Statistically Based Internal Variable Model, Mater. Sci. Eng. A, 2003, 339, p 1–9.

    Article  Google Scholar 

  22. Y.Q. Ning, X. Luo, H.Q. Liang, H.Z. Guo, J.L. Zhang, and K. Tan, Competition between Dynamic Recovery and Recrystallization during Hot Deformation for TC18 Titanium Alloy, Mater. Sci. Eng. A, 2015, 635, p 77–85.

    Article  CAS  Google Scholar 

  23. Z.Y. Ding, S.G. Jia, P.F. Zhao, M. Deng, and K.X. Song, Hot Deformation Behavior of Cu-0.6 Cr-0.03 Zr Alloy during Compression at Elevated Temperatures, Mater. Sci. Eng. A, 2013, 570, p 87–91.

    Article  CAS  Google Scholar 

  24. G.L. Ji, G. Yang, L. Li, and Q. Li, Modeling Constitutive Relationship of Cu-0.4 Mg Alloy during Hot Deformation, J. Mater. Eng. Perform., 2014, 23, p 1770–1779.

    Article  CAS  Google Scholar 

  25. W.L. Cheng, Y. Bai, S.C. Ma, L.F. Wang, H.X. Wang, and H. Yu, Hot Deformation Behavior and Workability Characteristic of a Fine-Grained Mg-8Sn-2Zn-2Al Alloy with Processing Map, J. Mater. Sci. Technol., 2019, 35, p 1198–1209.

    Article  CAS  Google Scholar 

  26. N. Tahreen, D.F. Zhang, F.S. Pan, X.Q. Jiang, D.Y. Li, and D.L. Chen, Hot Deformation and Processing Map of an As-Extruded Mg-Zn-Mn-Y Alloy Containing I and W Phases, Mater. Des., 2015, 87, p 245–255.

    Article  CAS  Google Scholar 

  27. X. Wang, L.I. Zhou, Z. Xiao, and W.T. Qiu, Microstructure Evolution and Hot Deformation Behavior of Cu-3Ti-0.1Zr Alloy with Ultra-high Strength, Trans. Nonferrous Met. Soc. China, 2020, 30, p 2737–2748.

    Article  CAS  Google Scholar 

  28. Y.F. Geng, Y. Zhang, K.X. Song, Y.L. Jia, X. Li, H.R. Stock, H.L. Zhou, B.H. Tian, Y. Liu, and A.A. Volinsky, Effect of Ce Addition on Microstructure Evolution and Precipitation in Cu-Co-Si-Ti Alloy during Hot Deformation, J. Alloy. Compd., 2020, 842, p 155666.

    Article  CAS  Google Scholar 

  29. X.R. Chen, Q.Y. Liao, Y.X. Niu, W.T. Jia, Q.C. Le, C.L. Cheng, F.X. Yu, and J.Z. Cui, A Constitutive Relation of AZ80 Magnesium Alloy during Hot Deformation Based on Arrhenius and Johnson–Cook Model, J. Mater. Res. Technol., 2019, 8, p 1859–1869.

    Article  CAS  Google Scholar 

  30. A. Galiyev, R. Kaibyshev, and G. Gottstein, Correlation of Plastic Deformation and Dynamic Recrystallization in Magnesium Alloy ZK60, Acta Mater., 2001, 49, p 1199–1207.

    Article  CAS  Google Scholar 

  31. Y.H. Duan, L.S. Ma, H.R. Qi, R.Y. Li, and P. Li, Developed Constitutive Models, Processing Maps and Microstructural Evolution of Pb-Mg-10Al-0.5 B Alloy, Mater. Charact., 2017, 129, p 353–366.

    Article  CAS  Google Scholar 

  32. H. Mirzadeh, J.M. Cabrera, and A. Najafizadeh, Modeling and Prediction of Hot Deformation Flow Curves, Metall. Mater. Trans. A., 2012, 43, p 108–123.

    Article  CAS  Google Scholar 

  33. S. Satheesh Kumar, T. Raghu, P.P. Bhattacharjee, G.A. Rao, and U. Borah, Constitutive Modeling for Predicting Peak Stress Characteristics during Hot Deformation of Hot Isostatically Processed Nickel-Base Superalloy, J. Mater. Sci., 2015, 50, p 6444–6456.

    Article  CAS  Google Scholar 

  34. Y.F. Geng, Y.J. Ban, B.J. Wang, X. Li, K.X. Song, Y. Zhang, Y.L. Jia, B.H. Tian, Y. Liu, and A.A. Volinsky, A Review of Microstructure and Texture Evolution with Nanoscale Precipitates for Copper Alloys, J. Mater. Res. Technol., 2020, 9, p 11918–11934.

    Article  CAS  Google Scholar 

  35. L. Blaz, E. Evangelista, and M. Niewczas, Precipitation Effects during Hot Deformation of a Copper Alloy, Metall. Mater. Trans. A., 1994, 25, p 257–266.

    Article  Google Scholar 

  36. Y. Zhang, H.L. Sun, A.A. Volinsky, B.H. Tian, K.X. Song, B.J. Wang, and Y. Liu, Hot Workability and Constitutive Model of the Cu-Zr-Nd Alloy, Vacuum, 2017, 146, p 35–43.

    Article  CAS  Google Scholar 

  37. R. Mishnev, I. Shakhova, A. Belyakov, and R. Kaibyshev, Deformation Microstructures, Strengthening Mechanisms, and Electrical Conductivity in a Cu-Cr-Zr alloy, Mater. Sci. Eng. A, 2015, 629, p 29–40.

    Article  CAS  Google Scholar 

  38. F. Bittner, S. Yin, A. Kauffmann, J. Freudenberger, H. Klauß, G. Korpala, R. Kawalla, W. Schillinger, and L. Schultz, Dynamic Recrystallization and Precipitation Behaviour of High Strength and Highly Conducting Cu-Ag-Zr-Alloys, Mater. Sci. Eng. A, 2014, 597, p 139–147.

    Article  CAS  Google Scholar 

  39. A.S.H. Kabir, M. Sanjari, J. Su, I.H. Jung, and S. Yue, Effect of Strain-Induced Precipitation on Dynamic Recrystallization in Mg-Al-Sn Alloys, Mater. Sci. Eng. A, 2014, 616, p 252–259.

    Article  CAS  Google Scholar 

  40. Y.S. Wu, X.Z. Qin, C.S. Wang, and L.Z. Zhou, Influence of Phosphorus on Hot Deformation Microstructure of a Ni-Fe-Cr Based Alloy, Mater. Sci. Eng. A, 2019, 768, p 138454.

    Article  CAS  Google Scholar 

  41. Y.S. Wu, Z. Liu, X.Z. Qin, C.S. Wang, and L.Z. Zhou, Effect of Initial State on Hot Deformation and Dynamic Recrystallization of Ni-Fe Based Alloy GH984G for Steam Boiler Applications, J. Alloy. Compd., 2019, 795, p 370–384.

    Article  CAS  Google Scholar 

  42. C.S. Wang, H.D. Fu, and J.X. Xie, Dynamic Recrystallization Behavior and Microstructure Evolution of High-Performance Cu-3.28Ni-0.6Si-0.22Zn-0.11Cr-0.04P during Hot Compression, Rare Met., 2021, 40, p 156–167.

    Article  CAS  Google Scholar 

  43. C. Haase and L.A. Barrales-Mora, Influence of Deformation and Annealing Twinning on the Microstructure and Texture Evolution of Face-Centered Cubic High-Entropy Alloys, Acta Mater., 2018, 150, p 88–103.

    Article  CAS  Google Scholar 

  44. M.Y. Li, H. Wang, Y.H. Guo, H.L. Wang, D.D. Zheng, J.F. Shan, and Y.Q. Chang, Microstructures and Mechanical Properties of the nOvel CuCrZrFeTiY Alloy for Fusion Reactor, J. Nucl. Mater., 2020, 532, p 152063.

    Article  CAS  Google Scholar 

  45. J. Yi, Y.L. Jia, Y.Y. Zhao, Z. Xiao, K.J. He, Q. Wang, M.P. Wang, and Z. Li, Precipitation Behavior of Cu-3.0Ni-0.72Si Alloy, Acta Mater., 2019, 166, p 261–270.

    Article  CAS  Google Scholar 

  46. H.Y. Yang, Y.Q. Bu, J.M. Wu, Y.T. Fang, J.B. Liu, L.Y. Huang, and H.T. Wang, High Strength, High Conductivity and Good Softening Resistance Cu-Fe-Ti Alloy, J. Alloy. Compd., 2022, 925, p 166595.

    Article  CAS  Google Scholar 

  47. C. Wang, Y.T. Liu, T. Lin, T.J. Luo, Y.H. Zhao, H. Hou, and Y.S. Yang, Hot Compression Deformation Behavior of Mg-5Zn-3.5Sn-1Mn-0.5Ca-0.5Cu Alloy, Mater. Charact., 2019, 157, p 109896.

    Article  CAS  Google Scholar 

  48. D. Jia, W.R. Sun, D.S. Xu, and F. Liu, Dynamic Recrystallization Behavior of GH4169G Alloy during Hot Compressive Deformation, J. Mater. Sci. Technol., 2019, 35, p 1851–1859.

    Article  CAS  Google Scholar 

  49. D.Q. Zhou, X.Q. Xu, H.H. Mao, Y.F. Yan, T.G. Nieh, and Z.P. Lu, Plastic Flow Behaviour in an Alumina-Forming Austenitic Stainless Steel at Elevated Temperatures, Mater. Sci. Eng. A, 2014, 594, p 246–252.

    Article  CAS  Google Scholar 

  50. W.C. Xu, X.Z. Jin, W.D. Xiong, X.Q. Zeng, and D.B. Shan, Study on Hot Deformation Behavior and Workability of Squeeze-Cast 20 vol.% SiCw/6061Al Composites Using Processing Map, Mater. Charact., 2018, 135, p 154–166.

    Article  CAS  Google Scholar 

  51. Y. Li and T.G. Langdon, Creep Behavior of an Al-6061 Metal Matrix Composite Reinforced with Alumina Particulates, Acta Mater., 1997, 45, p 4797–4806.

    Article  CAS  Google Scholar 

  52. S.J. Zhu, L.M. Peng, Z.Y. Ma, J. Bi, F.G. Wang, and Z.G. Wang, High Temperature Creep Behavior of SiC Whisker-Reinforced Al-Fe-V-Si Composite, Mater. Sci. Eng. A, 1996, 215, p 120–124.

    Article  Google Scholar 

  53. A. Sarkar, M. Prasad, and S.N. Murty, Effect of Initial Grain Size on Hot Deformation Behaviour of Cu-Cr-Zr-Ti Alloy, Mater. Charact., 2020, 160, p 110112.

    Article  CAS  Google Scholar 

  54. W. Wang, E.Y. Guo, Z.N. Chen, H.J. Kang, Z.J. Chen, C.L. Zou, R.G. Li, G.M. Yin, and T.M. Wang, Correlation between Microstructures and Mechanical Properties of Cryorolled CuNiSi Alloys with Cr and Zr Alloying, Mater. Charact., 2018, 144, p 532–546.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (52071134), the Program for Innovative Research Team at the University of Henan Province (22IRTSTHN001), China Postdoctoral Science Foundation (2020M682316, 2021T140779), and Outstanding Talents Innovation Fund of the Henan Province (ZYQR201912164).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that might influence the work described herein.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Q., Zhou, M., Zhang, Y. et al. Ce Effects on Dynamic Recrystallization of Cu-Fe-Ti-Mg Alloys Due to Hot Compression. J. of Materi Eng and Perform 32, 9698–9710 (2023). https://doi.org/10.1007/s11665-023-07810-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-07810-y

Keywords

Navigation