Skip to main content
Log in

Effect of BN(h) and Si3N4 Reinforcement Content on the Morphology and Properties of Ni-W Coatings

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Ni-W-BN(h)-Si3N4 nanocomposite coatings were deposited on AISI 1045 steel using a traditional electrodeposition technique. The effects of BN(h) and Si3N4 nanoparticles on the performance of the coatings were investigated. Varying concentrations of Si3N4 nanoparticles were added to the bath of Ni-W-BN(h) nanocomposite coatings having an optimized concentration of BN(h) nanoparticles. The electrodeposited coatings were characterized using a laser scanning confocal microscope tester, scanning electron microscope, energy dispersive spectroscopy, x-ray diffraction, Vickers microhardness, and high-frequency reciprocating CFT-1 wear tester. The results indicated that the peaks of the coatings were ascribed to (111) of FCC nickel-based solid solution. Ni, W, B, Si, and N elements were uniformly distributed in the coating. Ni-W-BN(h) coating fabricated with 6 g/L of BN(h) presented a hardness of 680.98 HV0.025 and a wear rate of 2.53 × 10−6 mm3·N−1m−1. Ni-W-BN(h) composite coating's microhardness and wear resistance were improved by maintaining the BN(h) concentration at 6 g/L and raising the Si3N4 concentration to 6 g/L. Ni-W-BN(h)-Si3N4 coating fabricated with 12 g/L of (BN(h) + Si3N4) presented the best microhardness (722.86 HV0.025) and wear rate (2.08 × 10−6 mm3·N−1m−1). The wear mechanisms of all coatings were studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Y. Lu, H. Li, H. Zhang, G. Huang, H. Xu, Z. Qin, and X. Lu, Zr-Based Metallic Glass Coating for Corrosion Resistance Improvement of 45 Steel, Mater. Trans., 2017, 58(9), p 1319–1321. https://doi.org/10.2320/matertrans.M2017118

    Article  CAS  Google Scholar 

  2. G. Huang, L. Qu, Y. Lu, Y. Wang, H. Li, Z. Qin, and X. Lu, Corrosion Resistance Improvement of 45 Steel by Fe-Based Amorphous Coating, Vacuum, 2018, 153, p 39–42. https://doi.org/10.1016/j.vacuum.2018.03.042

    Article  CAS  Google Scholar 

  3. H. Liu, J. Liu, P. Chen, H. Yang, J. Hao, and X. Tian, Microstructure and Properties of AlCoCrFeNiTi High-Entropy Alloy Coating on AISI1045 Steel Fabricated by Laser Cladding, J. Mater. Eng. Perform., 2019, 28(3), p 1544–1552. https://doi.org/10.1007/s11665-019-03949-9

    Article  CAS  Google Scholar 

  4. H. Liu, C. Wang, X. Zhang, Y. Jiang, C. Cai, and S. Tang, Improving the Corrosion Resistance and Mechanical Property of 45 Steel Surface by Laser Cladding with Ni60CuMoW Alloy Powder, Surf. Coat. Technol., 2013, 228, p S296–S300. https://doi.org/10.1016/j.surfcoat.2012.05.115

    Article  CAS  Google Scholar 

  5. D.H. Jeong, U. Erb, K.T. Aust, and G. Palumbo, The Relationship Between Hardness and Abrasive Wear Resistance of Electrodeposited Nanocrystalline Ni-P Coatings, Scripta Mater., 2003, 48(8), p 1067–1072. https://doi.org/10.1016/s1359-6462(02)00633-4

    Article  CAS  Google Scholar 

  6. M.M. Khruschov, Principles of Abrasive Wear, Wear, 1974, 28, p 69–88. https://doi.org/10.1016/0043-1648(74)90102-1

    Article  Google Scholar 

  7. B. Swain, S. Bhuyan, R. Behera, S.S. Mohapatra, and A. Behera, Wear: A Serious Problem in Industry, Tribology in Materials and Manufacturing—Wear, Friction and Lubrication, In A. Patnaik, T. Singh, V. Kukshal, (eds.), IntechOpen, 2020, pp. 1–20

  8. S.Y. Wang, P.K. Chu, B.Y. Tang, X.B. Tian, X.F. Wang, and Q.Z. Lin, Enhancement of Surface Properties of 45# carbon Steel Using Plasma Immersion Ion Implantation, Thin Solid Films, 1997, 311, p 190–195. https://doi.org/10.1016/s0040-6090(97)00465-3

    Article  CAS  Google Scholar 

  9. D. Clark, D. Wood, and U. Erb, Industrial Applications of Electrodeposited Nanocrystals, Nanostrut. Mater., 1997, 9, p 755–758.

    Article  CAS  Google Scholar 

  10. M.K. Tripathi, D.K. Singh, and V.B. Singh, Electrodeposition of Ni-Fe/BN Nano-Composite Coatings from a Nonaqueous Bath and Their Characterization, Int. J. Electrochem. Sci, 2013, 8, p 3454–3471.

    Article  CAS  Google Scholar 

  11. B. Bostani, N. Parvini Ahmadi, and S. Yazdani, Manufacturing of Functionally Graded Ni-ZrO2 Composite Coating Controlled by Stirring Rate of the Electroplating Bath, Surf. Eng., 2016, 32(7), p 495–500. https://doi.org/10.1080/02670844.2016.1148307

    Article  CAS  Google Scholar 

  12. A. Amadeh, M. Harsij Sani, and H. Moradi, Wear Behavior of Carbon Steel Electrodeposited by Nanocrystalline Ni-W Coating, Int. J. ISSI, 2009, 6, p 14–19.

    Google Scholar 

  13. H.-T. Wang, H.-H. Sheu, M.-D. Ger, and K.-H. Hou, The Effect of Heat Treatment on the Microstructure and Mechanical Properties of Electrodeposited Nanocrystalline Ni-W/diamond Composite Coatings, Surf. Coat. Technol., 2014, 259, p 268–273. https://doi.org/10.1016/j.surfcoat.2014.03.064

    Article  CAS  Google Scholar 

  14. B.V. Gbenontin, M. Kang, N.J. Ndiithi, S.M. Nyambura, E. Awuah, and Y. Zhang, Effect of Grit Blasting and Polishing Pretreatments on the Microhardness, Adhesion and Corrosion Properties of Electrodeposited Ni-W/SiC Nanocomposite Coatings on 45 Steel Substrate, Crystals, 2021, 11(7), p 729. https://doi.org/10.3390/cryst11070729

    Article  CAS  Google Scholar 

  15. X. Shi, Z. Zhang, L. Dai, Y. Lv, Z. Xu, Y. Yin, Z. Liao, and G. Wei, Effect of Al2O3 Nanoparticles and Heat Treatment on the Wear Resistance of Electrodeposited Ni-W/Al2O3 Composite Coatings, J. Mater. Eng. Perform., 2021, 31(4), p 3094–3106. https://doi.org/10.1007/s11665-021-06392-x

    Article  CAS  Google Scholar 

  16. Y. Wang, Q. Zhou, K. Li, Q. Zhong, and Q.B. Bui, Preparation of Ni-W-SiO2 Nanocomposite Coating and Evaluation of its Hardness and Corrosion Resistance, Ceram. Int., 2015, 41(1), p 79–84. https://doi.org/10.1016/j.ceramint.2014.08.034

    Article  CAS  Google Scholar 

  17. Y. Zhang, X. Leng, X. Wang, P. Ou, W. Zhang, and Q. Zhou, Electrodeposition and Characterization of Ni-W-Cr2O3 Nanocomposite Coating, Metallogr. Microstruct. Anal., 2017, 6(6), p 519–526. https://doi.org/10.1007/s13632-017-0402-5

    Article  CAS  Google Scholar 

  18. Y. Fan, Y. He, P. Luo, T. Shi, and X. Chen, Pulse Current Electrodeposition and Properties of Ni-W-GO Composite Coatings, J. Electrochem. Soc., 2015, 163(3), p D68–D73. https://doi.org/10.1149/2.0171603jes

    Article  CAS  Google Scholar 

  19. S. Mbugua Nyambura, M. Kang, J. Zhu, Y. Liu, Y. Zhang, and N.J. Ndiithi, Synthesis and Characterization of Ni-W/Cr2O3 Nanocomposite Coatings Using Electrochemical Deposition Technique, Coatings, 2019 https://doi.org/10.3390/coatings9120815

    Article  Google Scholar 

  20. B. Li, W. Zhang, D. Li, Y. Huan, and J. Dong, Microstructural, Surface and Electrochemical Properties of a Novel Ni-B/Ni-W-BN Duplex Composite Coating by Co-electrodeposition, Appl. Surf. Sci., 2018, 458, p 305–318. https://doi.org/10.1016/j.apsusc.2018.07.100

    Article  CAS  Google Scholar 

  21. S. Sangeetha and G.P. Kalaignan, Tribological and Electrochemical Corrosion Behavior of Ni-W/BN (Hexagonal) Nano-composite Coatings, Ceram. Int., 2015, 41(9), p 10415–10424. https://doi.org/10.1016/j.ceramint.2015.04.089

    Article  CAS  Google Scholar 

  22. S. Sangeetha and G.P. Kalaignan, Studies on the Electrodeposition and Characterization of PTFE Polymer Inclusion in Ni-W-BN Nanocomposite Coatings for Industrial Applications, RSC Adv., 2015, 5(90), p 74115–74125. https://doi.org/10.1039/c5ra11069f

    Article  CAS  Google Scholar 

  23. H. Li, Y. He, T. He, Y. Fan, Q. Yang, and Y. Zhan, The Influence of Pulse Plating Parameters on Microstructure and Properties of Ni-W-Si3N4 Nanocomposite Coatings, Ceram. Int., 2016, 42(16), p 18380–18392. https://doi.org/10.1016/j.ceramint.2016.08.171

    Article  CAS  Google Scholar 

  24. B. Li and W. Zhang, Microstructural, Surface and Electrochemical Properties of Pulse Electrodeposited Ni-W/Si3N4 Nanocomposite Coating, Ceram. Int., 2018, 44(16), p 19907–19918. https://doi.org/10.1016/j.ceramint.2018.07.254

    Article  CAS  Google Scholar 

  25. G. Gyawali, B. Joshi, K. Tripathi, and S.W. Lee, Preparation of Ni-W-Si3N4 Composite Coatings and Evaluation of Their Scratch Resistance Properties, Ceram. Int., 2016, 42(2), p 3497–3503. https://doi.org/10.1016/j.ceramint.2015.10.153

    Article  CAS  Google Scholar 

  26. M. Srivastava, V.K. William Grips, and K.S. Rajam, Influence of SiC, Si3N4 and Al2O3 Particles on the Structure and Properties of Electrodeposited Ni, Mater. Lett., 2008, 62(20), p 3487–3489. https://doi.org/10.1016/j.matlet.2008.03.008

    Article  CAS  Google Scholar 

  27. B.D. Cullity, S.R. Stock, and S. Stock, Elements of x-ray Diffraction Fraction, ed., Addison-Wesley, 2001

  28. N.P. Wasekar and G. Sundararajan, Sliding Wear Behavior of Electrodeposited Ni-W Alloy and Hard Chrome Coatings, Wear, 2015, 342–343, p 340–348. https://doi.org/10.1016/j.wear.2015.10.003

    Article  CAS  Google Scholar 

  29. N.P. Wasekar, S. Verulkar, M.V.N. Vamsi, and G. Sundararajan, Influence of Molybdenum on the Mechanical Properties, Electrochemical Corrosion and Wear Behavior of Electrodeposited Ni-Mo Alloy, Surf. Coat. Technol., 2019, 370, p 298–310. https://doi.org/10.1016/j.surfcoat.2019.04.059

    Article  CAS  Google Scholar 

  30. P. Yang, N. Wang, J. Zhang, Y. Lei, and B. Shu, Investigation of the Microstructure and Tribological Properties of CNTs/Ni Composites Prepared by Electrodeposition, Mater. Res. Express, 2022, 9(3), p 036404. https://doi.org/10.1088/2053-1591/ac5c2b

    Article  Google Scholar 

  31. K. Holmberg and A. Mathews, Coatings Tribology: A Concept, Critical Aspects and Future Directions, Thin Solid Films, 1994, 253, p 173–178. https://doi.org/10.1016/0040-6090(94)90315-8

    Article  CAS  Google Scholar 

  32. M. Uysal, H. Akbulut, M. Tokur, H. Algül, and T. Çetinkaya, Structural and Sliding Wear Properties of Ag/Graphene/WC Hybrid Nanocomposites Produced by Electroless Co-deposition, J. Alloy. Compd., 2016, 654, p 185–195. https://doi.org/10.1016/j.jallcom.2015.08.264

    Article  CAS  Google Scholar 

  33. S. Ahmadiyeh, A. Rasooli, M.G. Hosseini, and A.H.S. Farhood, Superior Corrosion and Wear Resistance of Pulse Plated Ni-W-B/SiC Composite Coatings, Mater. Chem. Phys., 2021, 270, p 124761. https://doi.org/10.1016/j.matchemphys.2021.124761

    Article  CAS  Google Scholar 

  34. S. Xing, L. Wang, C. Jiang, H. Liu, W. Zhu, and V. Ji, Influence of Y2O3 Nanoparticles on Microstructures and Properties of Electrodeposited Ni-W-Y2O3 Nanocrystalline Coatings, Vacuum, 2020, 181, p 109665. https://doi.org/10.1016/j.vacuum.2020.109665

    Article  CAS  Google Scholar 

  35. E. Ünal and İH. Karahan, Effects of Ultrasonic Agitation Prior to Deposition and Additives in the Bath on Electrodeposited Ni-B/hBN Composite Coatings, J. Alloy. Compd., 2018, 763, p 329–341. https://doi.org/10.1016/j.jallcom.2018.05.312

    Article  CAS  Google Scholar 

  36. X. Meng, Electrodeposition of Ni-Mo/TiO2 Nanocomposite Coatings on Low-Carbon Steels for Improving Corrosion Resistance, Int. J. Electrochem. Sci., 2020, 15, p 6198–6206. https://doi.org/10.20964/2020.07.35

    Article  CAS  Google Scholar 

  37. O. Younes, L. Zhu, Y. Rosenberg, Y. Shacham-Diamand, and E. Gileadi, Electroplating of Amorphous Thin Films of Tungsten/Nickel Alloys, Langmuir, 2001, 17, p 8270–8275. https://doi.org/10.1021/la010660x

    Article  CAS  Google Scholar 

  38. N. Guglielm, Kinetics of the Deposition of Inert Particles from Electrolytic Baths, J. Electrochem. Sac., 1972, 119(8), p 1009–1112.

    Article  Google Scholar 

  39. K.-H. Hou, T. Han, H.-H. Sheu, and M.-D. Ger, Preparation and Wear Resistance of Electrodeposited Ni-W/diamond Composite Coatings, Appl. Surf. Sci., 2014, 308, p 372–379. https://doi.org/10.1016/j.apsusc.2014.04.175

    Article  CAS  Google Scholar 

  40. M.-C. Chou, M.-D. Ger, S.-T. Ke, Y.-R. Huang, and S.-T. Wu, The Ni-P-SiC Composite Produced by Electro-Codeposition, Mater. Chem. Phys., 2005, 92(1), p 146–151. https://doi.org/10.1016/j.matchemphys.2005.01.021

    Article  CAS  Google Scholar 

  41. S. Dilek, H. Algül, A. Akyol, A. Alp, H. Akbulut, and M. Uysal, Pulse Electro Co-deposition of Submicron-Sized TiC Reinforced Ni-W Coatings: Tribological and Corrosion Properties, J. Asian Ceram. Soc, 2021, 9(2), p 673–685. https://doi.org/10.1080/21870764.2021.1911058

    Article  Google Scholar 

  42. X.-H. Zhang, X.-X. Li, W.-J. Liu, Y.-Q. Fan, H. Chen, and T.-X. Liang, Preparation and Tribological Behavior of Electrodeposited Ni-W-GO Composite Coatings, Rare Met., 2018, 38(7), p 695–703. https://doi.org/10.1007/s12598-018-1173-0

    Article  CAS  Google Scholar 

  43. E. Beltowska-Lehman, P. Indyka, A. Bigos, M. Kot, and L. Tarkowski, Electrodeposition of Nanocrystalline Ni-W Coatings Strengthened by Ultrafine Alumina Particles, Surf. Coat. Technol., 2012, 211, p 62–66. https://doi.org/10.1016/j.surfcoat.2011.10.021

    Article  CAS  Google Scholar 

  44. G. Gyawali, R. Adhikari, H.S. Kim, H.-B. Cho, and S.W. Leec, Effect of h-BN Nanosheets Codeposition on Electrochemical Corrosion Behavior of Electrodeposited Nickel Composite Coatings, ECS Electrochem. Lett., 2013, 2(3), p C7–C10. https://doi.org/10.1149/2.003303eel

    Article  CAS  Google Scholar 

  45. G. Gyawali, S.H. Cho, D.J. Woo, and S.W. Lee, Pulse Electrodeposition and Characterisation of Ni-SiC Composite Coatings in Presence of Ultrasound, Trans. Inst. Met. Finish., 2012, 90(5), p 274–280. https://doi.org/10.1179/0020296712Z.00000000043

    Article  CAS  Google Scholar 

  46. J. Qin, X. Zhang, K. Umporntheep, V. Auejitthavorn, R. Li, P. Wangyao, Y. Boonyongmaneerat, S. Limpanart, M. Ma, and R. Liu, Electrodeposition and Mechanical Properties of Ni-W Matrix Composite Coatings with Embedded Amorphous Boron Particles, Int. J. Electrochem. Sci., 2016, 11, p 9529–9541. https://doi.org/10.20964/2016.11.58

    Article  CAS  Google Scholar 

  47. Z. Shahri, S.R. Allahkaram, and A. Zarebidaki, Electrodeposition and Characterization of Co-BN (h) nanocomposite Coatings, Appl. Surf. Sci., 2013, 276, p 174–181. https://doi.org/10.1016/j.apsusc.2013.03.062

    Article  CAS  Google Scholar 

  48. G.N.K. Ramesh Bapu, Characteristics of Ni-BN Electrocomposites, Pla. Surf. Finish. 1995, pp. 70–73

  49. S. Shanmugasamy, K. Balakrishnan, A. Subasri, S. Ramalingam, and A. Subramania, Development of CeO2 Nanorods Reinforced Electrodeposited Nickel Nanocomposite Coating and its Tribological and Corrosion Resistance Properties, J. Rare Earths, 2018, 36(12), p 1319–1325. https://doi.org/10.1016/j.jre.2018.06.004

    Article  CAS  Google Scholar 

  50. H. Gül, F. Kılıç, M. Uysal, S. Aslan, A. Alp, and H. Akbulut, Effect of Particle Concentration on the Structure and Tribological Properties of Submicron Particle SiC Reinforced Ni metal Matrix Composite (MMC) Coatings Produced by Electrodeposition, Appl. Surf. Sci., 2012, 258(10), p 4260–4267. https://doi.org/10.1016/j.apsusc.2011.12.069

    Article  CAS  Google Scholar 

  51. S. Queyreau, G. Monnet, and B. Devincre, Orowan strengthening and Forest Hardening Superposition Examined by Dislocation Dynamics Simulations, Acta Mater., 2010, 58(17), p 5586–5595. https://doi.org/10.1016/j.actamat.2010.06.028

    Article  CAS  Google Scholar 

  52. M.A. Wimmera, J. Loosb, R. Nassutt, M. Heitkemperd, and A. Fischer, The Acting Wear Mechanisms on Metal-on-Metal Hip Joint Bearings: In Vitro Results, Wear, 2001, 250, p 129–139.

    Article  Google Scholar 

  53. M. Alizadeh, M. Mirak, E. Salahinejad, M. Ghaffari, R. Amini, and A. Roosta, Structural Characterization of Electro-Codeposited Ni-Al2O3-SiC Nanocomposite Coatings, J. Alloy. Compd., 2014, 611, p 161–166. https://doi.org/10.1016/j.jallcom.2014.04.181

    Article  CAS  Google Scholar 

  54. M. Uysal, H. Algül, E. Duru, Y. Kahraman, A. Alp, and H. Akbulut, Tribological Properties of Ni-W-TiO2-GO Composites Produced by Ultrasonically-Assisted Pulse Electro Co-deposition, Surf. Coat. Technol., 2021, 410, p 126942. https://doi.org/10.1016/j.surfcoat.2021.126942

    Article  CAS  Google Scholar 

  55. P. Bercot, E. Pena-Munoz, and J. Pagetti, Electrolytic Composite Ni-PTFE Coatings: An Adaptation of Guglielmi’s Model for the Phenomena of Incorporation, Surf. Coat. Technol., 2002, 157, p 282–289.

    Article  CAS  Google Scholar 

  56. J.P. Celis, J.R. Roos, and C. Buelens, A Mathematical Model for the Electrolytic Codeposition of Particles with a Metallic Matrix, J. Electrochem. Soc., 1987, p 1402

  57. Q. Zhang, Y. Feng, Z. Chen, W. Liao, S. Zhang, J. Zhou, and L. Wu, Preparation and Corrosion Resistance of Ni-W-CF Composite Coating on P110 Steel, Coatings, 2022, 12(2), p 231. https://doi.org/10.3390/coatings12020231

    Article  CAS  Google Scholar 

  58. Q. Niu, Z. Li, X. Yan, G. Liu, and B. Wang, Preparation and Corrosion Resistance of Ni-W-Y2O3-ZrO2 Nanocomposite Coatings, Int. J. Electrochem. Sci., 2017, 12, p 10259–10268. https://doi.org/10.20964/2017.11.100

    Article  CAS  Google Scholar 

  59. S. Shajahan and A. Basu, Corrosion, Oxidation and Wear Study of Electro-Co-Deposited ZrO2-TiO2 Reinforced Ni-W Coatings, Surf. Coat. Technol., 2020, 393, p 125729. https://doi.org/10.1016/j.surfcoat.2020.125729

    Article  CAS  Google Scholar 

  60. X.J. Sun and J.G. Li, Friction and Wear Properties of Electrodeposited Nickel-Titania Nanocomposite Coatings, Tribol. Lett., 2007, 28(3), p 223–228. https://doi.org/10.1007/s11249-007-9254-5

    Article  CAS  Google Scholar 

  61. S. Paydar, A. Jafari, M.E. Bahrololoom, and V. Mozafari, Influence of BN and B4C Particulates on Wear and Corrosion Resistance of Electroplated Nickel Matrix Composite Coatings, Tribol. Mater. Surf. Interfaces, 2015, 9(2), p 105–110. https://doi.org/10.1179/1751584x15y.0000000007

    Article  CAS  Google Scholar 

  62. N.P. Wasekar, L. Bathini, and G. Sundararajan, Tribological Behavior of Pulsed Electrodeposited Ni-W/SiC Nanocomposites, J. Mater. Eng. Perform., 2018, 27(10), p 5236–5245. https://doi.org/10.1007/s11665-018-3608-z

    Article  CAS  Google Scholar 

  63. S. Ahmadiyeh, A. Rasoolia, and M.G. Hossein, Ni-B/SiC Nanocomposite Coating Obtained by Pulse Plating and Evaluation of its Electrochemistry and Mechanical Properties, Surf. Eng., 2018 https://doi.org/10.1080/02670844.2018.1498823

    Article  Google Scholar 

Download references

Funding

The Jiangsu Provincial Key Research and Development Plan (BE2020311) and, the Fundamental Research Funds for the Central Universities (XUEKEN2022016) supported the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Kang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gbenontin, B.V., Kang, M., Ndumia, J.N. et al. Effect of BN(h) and Si3N4 Reinforcement Content on the Morphology and Properties of Ni-W Coatings. J. of Materi Eng and Perform 32, 8401–8418 (2023). https://doi.org/10.1007/s11665-022-07712-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07712-5

Keywords

Navigation