Skip to main content
Log in

Corrosion Behavior of CoCrFeMnNi High Entropy Alloy in 3.5% NaCl Solution with and without 0.05 M NaHSO3

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The corrosion behavior of CoCrFeMnNi high entropy alloy in 3.5 wt.% NaCl solution with and without 0.05 M NaHSO3 was studied by electrochemical measurement, immersion test, and atomic force microscope. The results show that with the addition of HSO3, the state of activation indicated by the anodic reaction evolves to the passivation state. Corrosion resistance is related to the state of the film on the HEA surface. The addition of HSO3 may produce a protective composition that transforms the corrosion product film into passive film. With the presence of HSO3, the dense and highly protective passive film is formed, which improves the corrosion resistance of the HEA. Without HSO3, the loose, incompact and incomplete corrosion product film produced on the surface of the HEA exhibits a low protective effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High-entropy Alloys with Multiple Principal Elements: Novel Alloys Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6, p 299–303.

    Article  CAS  Google Scholar 

  2. Y.Y. Chen, U.T. Hong, H.C. Shih, J.W. Yeh, and T. Duval, Electrochemical Kinetics of the High Entropy Alloys in Aqueous Environments–a Comparison with Type 304 Stainless Steel, Corros. Sci., 2005, 47, p 2679–2699.

    Article  CAS  Google Scholar 

  3. J.Y. He, C. Zhu, D.Q. Zhou, W.H. Liu, and Z.P. Lu, Steady State Flow of the FeCoNiCrMn High Entropy Alloy at Elevated Temperatures, Intermetallics, 2014, 55, p 9–14.

    Article  CAS  Google Scholar 

  4. P.J. Shi, W.L. Ren, T.X. Zheng, Z.M. Ren, X.L. Hou, J.C. Peng, P.F. Hu, Y.F. Gao, Y.B. Zhong, and P.K. Liaw, Enhanced Strength-Ductility Synergy in Ultrafine-Grained Eutectic High-Entropy Alloys by Inheriting Microstructural Lamellae, Nat. Commun., 2019, 10, p 489–497.

    Article  CAS  Google Scholar 

  5. C. Lee, G. Song, M.C. Gao, R. Feng, P. Chen, J. Brechtl, Y. Chen, K. An, W. Guo, J.D. Poplawsky, S. Li, A.T. Samaei, W. Chen, A. Hu, H. Choo, and P.K. Liaw, Lattice Distortion in a Strong and Ductile Refractory High-Entropy Alloy, Acta Mater., 2018, 160, p 158–172.

    Article  CAS  Google Scholar 

  6. Y. Qiu, S. Thomas, D. Fabijanic, A.J. Barlow, H.L. Fraser, and N. Birbilis, Microstructural Evolution, Electrochemical and Corrosion Properties of AlxCoCrFeNiTiy High Entropy Alloys, Mater. Des., 2019, 170, p 107698.

    Article  CAS  Google Scholar 

  7. B.C. Ocak and G. Goller, Investigation the Effect of FeNiCoCrMo HEA Addition on Properties of B4C Ceramic Prepared by Spark Plasma Sintering, J. Eur. Ceram. Soc., 2021, 41, p 6290–6301.

    Article  CAS  Google Scholar 

  8. O.N. Senkov, S.V. Senkova, C. Woodward, and D.B. Miracle, Low-density, Refractory Multi-principal Element Alloys of the Cr-Nb-Ti-V-Zr System: Microstructure and Phase Analysis, Acta Mater., 2013, 61, p 1545–1557.

    Article  CAS  Google Scholar 

  9. J. Yang, F.F. Zhang, Q.S. Chen, W. Zhang, C.D. Zhu, J.G. Deng, Y.L. Zhong, J.L. Liao, Y.Y. Yang, N. Liu, and J.J. Yang, Effect of Au-Ions Irradiation on Mechanical and LBE Corrosion Properties of Amorphous AlCrFeMoTi HEA Coating: Enhanced or Deteriorated?, Corros. Sci., 2021, 192, p 109862.

    Article  CAS  Google Scholar 

  10. R. Li, Y.M. Ma, X.S. Liu, Y. Lu, Y.F. Zhang, P.F. Yu, and G. Li, Effect of Defects on the Phase Transition of Al0.1CoCrFeNi High-Entropy Alloy under High Pressure, Intermetallics, 2022, 140, p 107388.

    Article  CAS  Google Scholar 

  11. R. Sriharitha, B.S. Murty, and R.S. Kottado, Alloying Thermal Stability and Strengthening in Spark Plasma Sintered AlxCoCrCuFeNi High Entropy Alloys, J. Alloys Compd., 2014, 538, p 419–426.

    Article  Google Scholar 

  12. L.W. Chen, Y.H. Zhao, Z.Q. Wen, J.Z. Tian, and H. Hou, Modelling and Optimization for Heat Treatment of Al-Si-Mg Alloy Prepared by Indirect Squeeze Casting Based on Response Surface Methodology, Mater. Res. Lett., 2017, 20, p 1274–1281.

    CAS  Google Scholar 

  13. F. Otto, A. Dlouhý, C.H. Somsen, H. Bei, G. Eggeler, and E.P. George, The influences of Temperature and Microstructure on the Tensile Properties of a CoCrFeMnNi High-Entropy Alloy, Acta Mater., 2013, 61, p 5743–5755.

    Article  CAS  Google Scholar 

  14. P. Thirathipviwat, Y. Onuki, G. Song, J. Han, and S. Sato, Evaluation of Dislocation Activities and Accumulation in Cold Swaged CoCrFeMnNi High Entropy Alloy, J. Alloys Compd., 2022, 890, p 161816.

    Article  CAS  Google Scholar 

  15. T.H. Yang, B. Cai, Y.J. Shi, M.X. Wang, and G.P. Zhang, Preparation of Nanostructured CoCrFeMnNi High Entropy Alloy by Hot Pressing Sintering Gas Atomized Powders, Micron, 2021, 147, p 103082.

    Article  CAS  Google Scholar 

  16. Y.K. Kim, J. Choe, and K.A. Lee, Selective Laser Melted Equiatomic CoCrFeMnNi High-Entropy Alloy: Microstructure, Anisotropic Mechanical Response, and Multiple Strengthening Mechanism, J. Alloys Compd., 2019, 805, p 680–691.

    Article  CAS  Google Scholar 

  17. H.T. Zheng, Xu. Qi, R.R. Chen, G. Qin, X.Z. Li, Y.Q. Su, J.J. Guo, and H.Z. Fu, Microstructure Evolution and Mechanical Property of Directionally Solidified CoCrFeMnNi High Entropy Alloy, Intermetallics, 2020, 119, p 106723.

    Article  CAS  Google Scholar 

  18. S.J. Sun, Y.Z. Tian, H.R. Lin, X.G. Dong, Y.H. Wang, Z.J. Wang, and Z.F. Zhang, Temperature Dependence of the Hall-Petch Relationship in CoCrFeMnNi High-Entropy Alloy, J. Alloys Compd., 2019, 806, p 992–998.

    Article  CAS  Google Scholar 

  19. H.Q. Xu, J.B. Zang, Y.G. Yuan, Y.K. Zhou, P.F. Tian, and Y.H. Wan, In-situ Assembly from Graphene Encapsulated CoCrFeMnNi High-Entropy Alloy Nanoparticles for Improvement Corrosion Resistance and Mechanical Properties in Metal Matrix Composites, J. Alloys Compd., 2019, 811, p 152082.

    Article  CAS  Google Scholar 

  20. B. Heine and R. Kirchheim, Dissolution Rates of Iron and Chromium and Fe Mn Alloys in the Passive State, Corros. Sci., 1990, 31, p 533–538.

    Article  CAS  Google Scholar 

  21. K. Qi, R.F. Li, G.J. Wang, G.Z. Li, B. Liu, and M.F. Wu, Microstructure and Corrosion Properties of Laser-Welded SAF 2507 Super Duplex Stainless Steel Joints, J. Mater. Eng. Perform., 2019, 28, p 287–295.

    Article  CAS  Google Scholar 

  22. C.F. Dong, Z.Y. Liu, X.G. Li, and Y.F. Cheng, Effects of Hydrogen Charging on the Susceptibility of X100 Pipeline Steel to Hydrogen Induced Cracked, Int. J. Hydrog. Energy., 2009, 34, p 9879–9884.

    Article  CAS  Google Scholar 

  23. Y. Chumlyakov, I.V. Kireeva, A.D. Korotaev, E.I. Litvinova, and Y. Zuev, Mechanisms of the Plastic Deformation, Hardening and Fracture in Single Crystals of Nitrogen-Containing Austenitic Stainless Steel, Russ. Phys. J., 1996, 39, p 189–210.

    Article  Google Scholar 

  24. P. Zhou, L.X. Yang, Y.J. Hou, G.Q. Duan, B.X. Yu, X.J. Li, Y.F. Zhai, B. Zhang, T. Zhang, and F.H. Wang, Grain Refinement Promotes the Formation of Phosphate Conversion Coating on Mg Alloy AZ91D with High Corrosion Resistance and Low Electrical Contact Resistance, Corros. Commun., 2021, 1, p 47–57.

    Article  Google Scholar 

  25. C.N. Cao, On the Impedance Plane Displays for Irreversible Electrode Reactions Based on The Stability Conditions of the Steady-State-I. One State Variable Besides Electrode Potential, Electrochim. Acta., 1990, 35, p 831–836.

    Article  CAS  Google Scholar 

  26. L. Pao, I. Muto, and Y. Sugawara, Pitting at Inclusions of the Equiatomic CoCrFeMnNi Alloy and Improving Corrosion Resistance by Potentiodynamic Polarization in H2SO4, Corr. Sci., 2021, 191, p 109748.

    Article  CAS  Google Scholar 

  27. H. Luo, Z. Li, A.M. Mingers, and D. Raabe, Corrosion Behavior of an Equiatomic CoCrFeMnNi High-Entropy Alloy Compared with 304 Stainless Steel in Sulfuric Acid Solution, Corros. Sci., 2018, 134, p 131–139.

    Article  CAS  Google Scholar 

  28. Y. Wang, J.S. Jin, M. Zhang, X.Y. Wang, P. Gong, J.C. Zhang, and J.C. Liu, Effect of the Grain Size on the Corrosion Behavior of CoCrFeMnNi HEAs in a 0.5 M H2SO4 Solution, J. Alloy. Comp., 2021, 858, p 157712.

    Article  CAS  Google Scholar 

  29. H. Luo, S.W. Zou, Y.H. Chen, Z.M. Li, C.W. Du, and X.G. Li, Influence of Carbon on the Corrosion Behavior of Interstitial Equiatomic CoCrFeMnNi High-Entropy Alloy in a Chlorinated Concrte Solution, Corros. Sci., 2020, 163, p 108287.

    Article  CAS  Google Scholar 

  30. M. Zhu, B.Z. Zhao, Y.F. Yuan, S.M. Yin, and S.Y. Guo, Effect of Annealing Time on Microstructure and Corrosion Behavior of CoCrFeMnNi High-Entropy Alloy in Alkaline Soil Simulation Solution, Corros. Commun., 2021, 3, p 45–61.

    Article  Google Scholar 

  31. M. Zhu, B.Z. Zhao, Y.F. Yuan, S.M. Yin, S.Y. Guo, and G.Y. Wei, Effect of Annealing Temperature on Microstructure and Corrosion Behavior of CoCrFeMnNi High-Entropy Alloy in Alkaline Soil Simulation Solution, Mater. Chem. Phys., 2022, 279, p 125725.

    Article  CAS  Google Scholar 

  32. M. Zhu, B.Z. Zhao, Y.F. Yuan, S.Y. Guo, and J. Pan, Effect of Solution Temperature on Corrosion Behavior of 6061–T6 Aluminum Alloy in NaCl Solution, J. Mater. Eng. Perform., 2020, 29, p 4725–4732.

    Article  CAS  Google Scholar 

  33. C.W. Lu, Y.S. Lu, Z.H. Lai, H.W. Yen, and Y.L. Lee, Comparative Corrosion Behavior of Fe50Mn30Co10Cr10 Dual-Phase High-Entropy Alloy and CoCrFeMnNi High-Entropy Alloy in 3.5 wt.% NaCl Solution, J. Alloys Comp., 2020, 842, p 155824.

    Article  CAS  Google Scholar 

  34. L.B. Niu and K. Nakada, Effect of Chloride and Sulfate Ions in Simulated Boiler Water on Pitting Corrosion Behavior of 13Cr Steel, Corros. Sci., 2015, 96, p 171–177.

    Article  CAS  Google Scholar 

  35. Y.L. Chou, Y.C. Wang, J.W. Yeh, and H.C. Shih, Pitting Corrosion of the High-Entropy Alloy Co1.5CrFeNi1.5Ti0.5Mo0.1 in Chloride-Containing Sulphate Solutions, Corros. Sci., 2010, 52, p 3481–3491.

    Article  CAS  Google Scholar 

  36. M. Liu, Effect of Uniform Corrosion on Mechanical Behavior of E690 High-Strength Steel Lattice Corrugated Panel in Marine Environment: A Finite Element Analysis, Mater. Res. Express., 2021, 8, p 066510.

    Article  CAS  Google Scholar 

  37. L.A. Chen, Y.S. Lu, Y.T. Lin, and Y.L. Lee, Preparation and Characterization of Cerium-Based Conversion Coating on a Fe50Mn30Co10Cr10 Dual-Phase High-Entropy Alloy, Appl. Surf. Sci., 2021, 562, p 150200.

    Article  CAS  Google Scholar 

  38. N.P. Wasekar, N. Hebalkar, A. Jyothirmayi, B. Lavakumar, M. Ramakrishna, and G. Sundararajan, Influence of Pulse Parameters on the Mechanical Properties and Electrochemical Corrosion Behavior of Electrodeposited Ni-W Alloy Coatings with High Tungsten Content, Corros. Sci., 2020, 160, p 108409.

    Article  Google Scholar 

  39. A.M. Oje, A.A. Ogwu, S.U. Rahman, A.I. Oje, and N. Tsendzughul, Effect of Temperature Variation on the Corrosion Behaviour and Semiconducting Properties of the Passive Film Formed on Chromium Oxide Coatings Exposed to Saline Solution, Corr. Sci., 2019, 154, p 28–35.

    Article  CAS  Google Scholar 

  40. M.Q. Wang, Z.H. Zhou, Q.J. Wang, Z.H. Wang, X. Zhang, and Y.Y. Liu, Role of Passive Film in Dominating the Electrochemical Corrosion Behavior of FeCrMoCBY Amorphous Coating, J. Alloys Comp., 2019, 811, p 151962.

    Article  CAS  Google Scholar 

  41. H. Luo, S.W. Zou, Y.H. Chen, Z.M. Li, C.W. Du, and X.G. Li, Influence of Carbon on the Corrosion Behavior of Interstitial Equiatomic CoCrFeMnNi High-Entropy Alloys in Chlorinated Concrete Solution, Corros. Sci., 2020, 163, p 108287.

    Article  CAS  Google Scholar 

  42. M. Zhu, Q. Zhang, Y.F. Yuan, S. Guo, and Y. Huang, Study on the Correlation between Passive Film and AC Corrosion Behavior of 2507 Super Duplex Stainless Steel in Simulated Marine Environment, J. Electroanal. Chem., 2020, 864, p 114072.

    Article  CAS  Google Scholar 

  43. R.S.C. Smart, W.M. Skinner, and A.R. Gerson, XPS of Sulphide Mineral Surfaces: Metal-deficient, Polysulphides, Defects and Elemental Sulphur, Surf. Interface Anal. Int. J. Devoted Develop. Appl. Techniq. Anal. Surf. Interfaces Thin Films, 1999, 28(1), p 101–105.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51871026), and the Natural Science Foundation of Zhejiang Province, China (No. LY18E010004), and the Fundamental Research Funds of Zhejiang Sci-Tech University (No. 22242293-Y).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, S.X., Zhu, M., Yuan, Y.F. et al. Corrosion Behavior of CoCrFeMnNi High Entropy Alloy in 3.5% NaCl Solution with and without 0.05 M NaHSO3. J. of Materi Eng and Perform 32, 7545–7555 (2023). https://doi.org/10.1007/s11665-022-07650-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07650-2

Keywords

Navigation