Skip to main content

Advertisement

Log in

The Effect of Gd Concentration on the Mechanical Properties and Corrosion Behavior of Extruded Mg-8Li-3Al-xGd (x = 0, 0.6, 1.2, and 1.8 wt.%) Alloys

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The mechanical properties and corrosion resistance of extruded Mg-8Li-3Al alloys with varying Gd contents are investigated by x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electrochemical tests. The results show that the size of α-Mg grains in extruded Mg-8Li-3Al alloys is obviously refined during the dynamic recrystallization process due to the addition of Gd. The ultimate tensile strength of extruded Mg-8Li-3Al-1.2Gd alloy attains to 278 MPa, which is approximately 35% higher than that of the matrix alloy (206 MPa). The improved mechanical properties of the Mg-8Li-3Al alloys containing Gd are mainly attributed to the formation of the Al2Gd phase, which can refine the α-Mg grain as a heterogeneous nucleation substrate and hinder the movement of the dislocations and grain boundaries and the rotation of the grains. The comprehensive electrochemical results show that the corrosion resistance of extruded Mg-8Li-3Al-xGd (x = 0.6, 1.2 and 1.8 wt.%) alloys is improved by the addition of Gd. In addition, the corrosion mechanism of extruded Mg-8Li-3Al alloys contained Gd is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. X.C. Luo, L.M. Kang, H.L. Liu, Z.J. Li, Y.F. Liu, D.T. Zhang, and D.L. Chen, Enhancing Mechanical Properties of AZ61 Magnesium Alloy Via Friction Stir Processing: Effect of Processing Parameters, Mater. Sci. Eng., A, 2020, 797, 139945.

    Article  CAS  Google Scholar 

  2. W.J. Joost and P.E. Krajewski, Towards Magnesium Alloys for High-Volume Automotive Applications, Scripta Mater., 2017, 128, p 107-112.

    Article  CAS  Google Scholar 

  3. X. Li, Z. Hu, H. Yan, X. Wu, H. Xie, and Z. Dong, Effect of Sm-Rich Phase on Corrosion Behavior of Hot-Extruded AZ31-1.5Sm Magnesium Alloy, J. Mater. Eng. Perform., 2018, 27, p 3072-3082.

    Article  CAS  Google Scholar 

  4. J. Le, L. Liu, F. Liu, Y. Deng, C. Zhong, and W. Hu, Interdiffusion Kinetics of the Intermetallic Coatings on AZ91D Magnesium Alloy formed in Molten Salts at Lower Temperatures, J. Alloy. Compd., 2014, 610, p 173-179.

    Article  CAS  Google Scholar 

  5. C. Muga, H. Guo, Y. Zou, S. Xu, and Z. Zhang, Effects of Holmium and Hot-Rolling on Microstructure and Mechanical Properties of Mg-Li based Alloys, J. Rare Earths, 2016, 34, p 1269-1276.

    Article  CAS  Google Scholar 

  6. Y. Yan, Y. Qiu, O. Gharbi, N. Birbilis, and P.N.H. Nakashima, Characterisation of Li in the Surface Film of a Corrosion Resistant Mg-Li(-Al-Y-Zr) alloy, Appl. Surf. Sci., 2019, 494, p 1066-1071.

    Article  CAS  Google Scholar 

  7. Z. Zhu, J. Zhu, Y. Nie, X. Li, J. Cheng, and X. Zhang, Effects of Annealing on Mechanical and Corrosion Properties of as-Extruded NQZ310K Alloy, J. Mater. Eng. Perform., 2020, 29, p 925-932.

    Article  CAS  Google Scholar 

  8. J. Zhao, B. Jiang, Z. Dai, and Lu. Liwei, Microstructure, Texture, and Tensile Properties of Mg-3Li Alloy Extruded at Different Temperatures, J Mater. Eng. Perform., 2022, 31(7), p 5782-5789. https://doi.org/10.1007/s11665-022-06625-7

    Article  CAS  Google Scholar 

  9. X. Lu, Y. Li, P. Ju, Y. Chen, J. Yang, K. Qian, T. Zhang, and F. Wang, Unveiling the Inhibition Mechanism of an Effective Inhibitor for AZ91 Mg Alloy, Corros. Sci., 2019, 148, p 264-271.

    Article  CAS  Google Scholar 

  10. A. Medjahed, A. Henniche, M. Derradji, T. Yu, Y. Wang, R. Wu, L. Hou, J. Zhang, X. Li, and M. Zhang, Effects of Cu/Mg Ratio on the Microstructure, Mechanical and Corrosion Properties of Al-Li-Cu-Mg-X Alloys, Mater. Sci. Eng., A, 2018, 718, p 241-249.

    Article  CAS  Google Scholar 

  11. Y. Yang, X. Xiong, J. Chen, X. Peng, D. Chen, and F. Pan, Research Advances in Magnesium and Magnesium Alloys Worldwide in 2020, J. Magnesium Alloys, 2021, 9, p 705-747.

    Article  CAS  Google Scholar 

  12. B.J. Wang, D.K. Xu, X. Cai, Y.X. Qiao, and L.Y. Sheng, Effect of Rolling Ratios on the Microstructural Evolution and Corrosion Performance of an as-rolled Mg-8 wt.%Li alloy, J. Magnesium Alloys, 2021, 9, p 560-568.

    Article  CAS  Google Scholar 

  13. T. Zhao, Y. Hu, C. Zhang, and B. He, T. Zheng, A. Tang, F. Pan, Influence of Extrusion Conditions on Microstructure and Mechanical Properties of Mg-2Gd-0.3Zr Magnesium Alloy, J. Magnes. Alloys, 2020.

  14. X. Zhang, S.K. Kairy, J. Dai, and N. Birbilis, A Closer Look at the Role of Nanometer Scale Solute-Rich Stacking Faults in the Localized Corrosion of a Magnesium Alloy GZ31K, J. Electrochem. Soc., 2018, 165, p C310-C316.

    Article  CAS  Google Scholar 

  15. X. Zhang, J. Dai, Q. Dong, Z. Ba, and Y. Wu, Corrosion Behavior and Mechanical Degradation of as-Extruded Mg-Gd-Zn-Zr Alloys for Orthopedic Application, J. Biomed. Mater. Res. B Appl. Biomater., 2020, 108, p 698-708.

    Article  CAS  Google Scholar 

  16. X. Zhang, J. Dai, R. Zhang, Z. Ba, and N. Birbilis, Corrosion behavior of Mg-3Gd-1Zn-0.4Zr Alloy with and without Stacking Faults, J. Magnesium Alloys, 2019, 7(2), p 240-248. https://doi.org/10.1016/j.jma.2019.02.009

    Article  CAS  Google Scholar 

  17. X. Peng, X. Shihao, D. Ding, G. Liao, W. Guohua, W. Liu, and W. Ding, Microstructural Evolution, Mechanical Properties and Corrosion Behavior of as-cast Mg-5Li-3Al-2Zn Alloy with Different Sn and Y Addition[J], J. Mater. Sci. Technol., 2021, 72, p 16-22.

    Article  CAS  Google Scholar 

  18. L.Y. Sheng, B.N. Du, Z.Y. Hu, Y.X. Qiao, Z.P. Xiao, B.J. Wang, D.K. Xu, Y.F. Zheng, and T.F. Xi, Effects of Annealing Treatment on Microstructure and Tensile Behavior of the Mg-Zn-Y-Nd alloy, Journal of Magnesium and Alloys, 2020, 8, p 601-613.

    Article  CAS  Google Scholar 

  19. Z. Yin, R. He, Y. Chen, Z. Yin, K. Yan, K. Wang, H. Yan, H. Song, C. Yin, H. Guan, C. Luo, Z. Hu, and C. Luc, Effects of Surface Micro-Galvanic Corrosion and Corrosive Film on the Corrosion Resistance of AZ91-xNd Alloys, Appl. Surf. Sci., 2021, 536, 147761.

    Article  CAS  Google Scholar 

  20. B. Du, Z. Hu, J. Wang, L. Sheng, H. Zhao, Y. Zheng, and T. Xi, Effect of Extrusion Process on the Mechanical and in Vitro Degradation Performance of a Biomedical Mg-Zn-Y-Nd alloy, Bioact Mater, 2020, 5, p 219-227.

    Article  Google Scholar 

  21. H. Bo, L.B. Liu, J.L. Hu, X.D. Zhang, and Z.P. Jin, Thermodynamic re-Assessment of the Al-Gd and Gd-Zr Systems, Thermochim. Acta, 2014, 591, p 51-56.

    Article  CAS  Google Scholar 

  22. Z. Zheng, Q. Xing, Z. Sun, J. Xu, Z. Zhao, S. Chen, P.K. Liaw, and Y. Wang, Effects of Annealing on the Microstructure, Corrosion Resistance, and Mechanical Properties of RE65Co25Al10 (RE=Ce, La, Pr, Sm, and Gd) Bulk Metallic Glasses, Mater. Sci. Eng., A, 2015, 626, p 467-473.

    Article  CAS  Google Scholar 

  23. L. Sheng, X. Zhang, H. Zhao, and B. Du, Y. Zheng, T. Xi, Influence of Multi-Pass Hot Extrusion on Microstructure and Mechanical Properties of the Mg-4Zn-1.2Y-0.8Nd Alloy[J], Crystals, 2021, 11: 425.

  24. P. Dinesh, S. Manivannan, S.P. Kumaresh Babu, and S. Natarajan, Effect of Nd on the Microstructure and Corrosion Behaviour of Mg-9Li-3Al Magnesium Alloy in 3.5 wt.% NaCl Solution, Mater. Today, 2019, 15, p 126-131.

    Article  CAS  Google Scholar 

  25. X. Zhang, Z. Ba, Z. Wang, Y. Wu, and Y. Xue, Effect of LPSO Structure on Mechanical Properties and Corrosion Behavior of as-Extruded GZ51K Magnesium Alloy, Mater. Lett., 2016, 163, p 250-253.

    Article  CAS  Google Scholar 

  26. T. Zhu, C. Cui, T. Zhang, R. Wu, S. Betsofen, Z. Leng, J. Zhang, and M. Zhang, Influence of the Combined Addition of Y and Nd on the Microstructure and Mechanical Properties of Mg-Li alloy, Mater. Des., 2014, 57, p 245-249.

    Article  CAS  Google Scholar 

  27. F. Zhong, H. Wu, Y. Jiao, R. Wu, J. Zhang, L. Hou, and M. Zhang, Effect of Y and Ce on the Microstructure, Mechanical Properties and Anisotropy of as-rolled Mg-8Li-1Al alloy, J. Mater. Sci. Technol., 2020, 39, p 124-134.

    Article  CAS  Google Scholar 

  28. B. Zhang, X.D. Peng, Y. Ma, Y.M. Li, Y.Q. Yu, and G.B. Wei, Microstructure and Mechanical Properties of Mg-9Li-3Al-xGd Alloys, Mater. Sci. Technol-lond., 2015, 31, p 1035-1041.

    Article  CAS  Google Scholar 

  29. J.-W. Dai, X.-Bo. Zhang, Y. Fei, Z.-Z. Wang, and H.-M. Sui, Effect of Solution Treatment on Microstructure and Corrosion Properties of Mg-4Gd-1Y-1Zn-0.5Ca-1Zr Alloy, Acta Metallurgica Sinica Engl. Lett., 2018, 31(8), p 865-872. https://doi.org/10.1007/s40195-018-0709-5

    Article  CAS  Google Scholar 

  30. N. Jiang, L. Chen, L. Meng, C. Fang, H. Hao, and X. Zhang, Effect of Neodymium, Gadolinium Addition on Microstructure and Mechanical Properties of AZ80 Magnesium Alloy, J. Rare Earths, 2016, 34, p 632-637.

    Article  CAS  Google Scholar 

  31. R. Arrabal, B. Mingo, A. Pardo, E. Matykina, M. Mohedano, M.C. Merino, A. Rivas, and A. Maroto, Role of Alloyed Nd in the Microstructure and Atmospheric Corrosion of as-cast Magnesium Alloy AZ91, Corros. Sci., 2015, 97, p 38-48.

    Article  CAS  Google Scholar 

  32. R. Arrabal, A. Pardo, M.C. Merino, K. Paucar, M. Mohedano, P. Casajús, and G. Garcés, Influence of Gd on the Corrosion Behavior of AM50 and AZ91D Magnesium Alloys, Corrosion, 2012, 68, p 398-410.

    Article  CAS  Google Scholar 

  33. Z. Hu, Z. Yin, Z. Yin, K. Wang, Q. Liu, P. Sun, H. Yan, H. Song, C. Luo, H. Guan, and C. Luc, Corrosion Behavior Characterization of as Extruded Mg-8Li-3Al Alloy with Minor Alloying Elements (Gd, Sn and Cu) by Scanning Kelvin Probe Force Microscopy, Corros. Sci., 2020, 176, 108923.

    Article  CAS  Google Scholar 

  34. B.L. Bramfitt, The Effect of Carbide and Nitride Additions on the Heterogeneous Nucleation Behavior of Liquid Iron, Metall. Trans., 1970, 1, p 1987-1995.

    Article  CAS  Google Scholar 

  35. B.N. Du, Z.Y. Hu, L.Y. Sheng, D.K. Xu, Y.X. Qiao, B.J. Wang, J. Wang, Y.F. Zheng, and T.F. Xi, Microstructural Characteristics and Mechanical Properties of the Hot Extruded Mg-Zn-Y-Nd Alloys, J. Mater. Sci. Technol., 2021, 60, p 44-55.

    Article  CAS  Google Scholar 

  36. B.N. Du, Z.P. Xiao, Y.X. Qiao, L. Zheng, B.Y. Yu, D.K. Xu, and L.Y. Sheng, Optimization of Microstructure and Mechanical Property of a Mg-Zn-Y-Nd alloy by Extrusion Process, J. Alloy. Compd., 2019, 775, p 990-1001.

    Article  CAS  Google Scholar 

  37. Y. Song, E.H. Han, D. Shan, C.D. Yim, and B.S. You, The Effect of Zn Concentration on the Corrosion Behavior of Mg-xZn Alloys, Corros. Sci., 2012, 65, p 322-330.

    Article  CAS  Google Scholar 

  38. Z. Yin, Y. Chen, H. Yan, G.H. Zhou, X.Q. Wu, and Z. Hu, Effects of the Second Phases on Corrosion Resistance of AZ91-xGd Alloys Treated with Ultrasonic Vibration, J. Alloy. Compd., 2019, 783, p 877-885.

    Article  CAS  Google Scholar 

  39. A. Nandini Dinodi and Nityananda Shetty, Electrochemical Investigations on the Corrosion Behaviour of Magnesium Alloy ZE41 in a Combined Medium of Chloride And Sulphate, J. Magnesium Alloys, 2013, 1(3), p 201-209. https://doi.org/10.1016/j.jma.2013.08.003

    Article  CAS  Google Scholar 

  40. Y. Luo, Y. Deng, L. Guan, L. Ye, and X. Guo, The Microstructure and Corrosion Resistance of as-Extruded Mg-6Gd-2Y- (0-1.5) Nd-0.2Zr Alloys, Materials and Design, 2020, 186, p 108289.

    Article  CAS  Google Scholar 

  41. G. Song, A. Atrens, D.S. John, X. Wu, and J. Nairn, The Anodic Dissolution of Magnesium in Chloride and Sulphate Solutions, Corros. Sci., 1997, 39, p 1981-2004.

    Article  CAS  Google Scholar 

  42. W.L. Cheng, S.C. Ma, Y. Bai, Z.Q. Cui, and H.X. Wang, Corrosion Behavior of Mg-6Bi-2Sn Alloy in the Simulated Body Fluid Solution: The Influence of Microstructural Characteristics, J. Alloy. Compd., 2018, 731, p 945-954.

    Article  CAS  Google Scholar 

  43. M. Cheng, J. Chen, H. Yan, B. Su, Z. Yu, W. Xia, and X. Gong, Effects of Minor Sr Addition on Microstructure, Mechanical and bio-Corrosion Properties of the Mg-5Zn Based alloy System, J. Alloy. Compd., 2017, 691, p 95-102.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support by the National Natural Science Foundation of China (51961026, 52065066) and Interdisciplinary Innovation Fund of Nanchang University (Project No.2019-9166-27060003)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaohui Chen or Zhi Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, M., Deng, S., Yin, Z. et al. The Effect of Gd Concentration on the Mechanical Properties and Corrosion Behavior of Extruded Mg-8Li-3Al-xGd (x = 0, 0.6, 1.2, and 1.8 wt.%) Alloys. J. of Materi Eng and Perform 32, 6642–6653 (2023). https://doi.org/10.1007/s11665-022-07607-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07607-5

Keywords

Navigation