Skip to main content
Log in

Effect of Interrupted Aging–Retrogression Re-Aging Treatment on the Microstructure and Properties of Al-Zn-Mg-Cu Alloy

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study aims to investigate the microstructure and properties of Al-Zn-Mg-Cu alloy that is subjected to a coupled aging treatment, interrupted aging (T6I4) and retrogression and re-aging (RRA). For this purpose, the properties were systematically investigated through the tests of Vickers hardness, tension, and intergranular corrosion. The matrix precipitates were analyzed by transmission electron microscopy. According to the experimental results, the alloy treated by T6I4-RRA was improved by 37% in elongation with the loss of 2% in strength compared to that treated by peak aging (T6). In addition, the corrosion depth of the alloy treated by coupled aging decreased by 40% compared to that of the T6-aged material. According to the microstructure investigations, finer precipitates were formed in the T6I4-RRA-aged alloy, accompanied with intermittent grain boundary precipitates and appropriate precipitate-free zones. Importantly, this peculiar microstructure contributes to resolving the contradiction between strength properties and corrosion resistance of Al-Zn-Mg-Cu alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K. Wen et al., Transformation and Dissolution of Second Phases During Solution Treatment of an Al-Zn-Mg-Cu Alloy Containing High Zinc, Rare Met., 2018, 37(5), p 376–380. https://doi.org/10.1007/s12598-016-0768-6

    Article  CAS  Google Scholar 

  2. T. Dursun and S. Costas, Recent Developments in Advanced Aircraft Aluminium Alloys, Mater. Des., 2014, 56, p 862–871. https://doi.org/10.1016/j.matdes.2013.12.002

    Article  CAS  Google Scholar 

  3. Y. Hou et al., Effects of Artificial Aging on Microstructure, Mechanical Properties and Stress Corrosion Cracking of a Novel High Strength 7A99 Al Alloy, Mater. Sci. Eng. A, 2020, 780, p 139217. https://doi.org/10.1016/j.msea.2020.139217

    Article  CAS  Google Scholar 

  4. P. Liu et al., Effect of Aging Treatment on Microstructure and Corrosion Behavior of Al-Zn-Mg Aluminum Alloy in Aqueous Solutions with Different Aggressive Ions, J. Mater. Sci. Technol., 2021, 64, p 85–98. https://doi.org/10.1016/j.jmst.2019.09.030

    Article  CAS  Google Scholar 

  5. Cina, B. Reducing the susceptibility of alloys, particularly aluminium alloys, to stress corrosion cracking. US, US3856584 A. 1974. https://www.freepatentsonline.com/3856584.html

  6. S. Chen et al. Effect of Heat Treatment on Strength, Exfoliation Corrosion and Electrochemical Behavior of 7085 Aluminum Alloy, Mater. Des., 2012, 35, p 93–98. https://doi.org/10.1016/j.matdes.2011.09.033

    Article  CAS  Google Scholar 

  7. R.N. Lumley, I.J. Polmear, and A.J. Morton, Development of Mechanical Properties During Secondary Aging in Aluminium Alloys, Mater. Sci. Technol., 2005, 21(9), p 1025–1032. https://doi.org/10.1179/174328405x51875

    Article  CAS  Google Scholar 

  8. J. Buha et al. Secondary Precipitation in an Al–Mg–Si–Cu Alloy, Acta Mater., 2007, 55(9), p 3015–3024. https://doi.org/10.1016/j.actamat.2007.01.006

    Article  CAS  Google Scholar 

  9. R.K.W. Marceau et al. Evolution of Solute Clustering in Al–Cu–Mg Alloys During Secondary Ageing, Acta Mater., 2010, 58(5), p 1795–1805. https://doi.org/10.1016/j.actamat.2009.11.021

    Article  CAS  Google Scholar 

  10. J.-F. Li et al. Mechanical Properties, Corrosion Behaviors and Microstructures of 7075 Aluminium Alloy with Various Aging Treatments, Trans. Nonferrous Met. Soc. China, 2008, 18(4), p 755–762. https://doi.org/10.1016/S1003-6326(08)60130-2

    Article  CAS  Google Scholar 

  11. A.L.M. Carvalho et al. Microstructure Analysis of 7050 Aluminum Alloy Processed by Multistage Aging Treatments, J. Alloys Compd., 2022, 907, 164400. https://doi.org/10.1016/j.jallcom.2022.164400

    Article  CAS  Google Scholar 

  12. L. Qu et al. Influence of Aging Treatment on the Microstructure, Mechanical Properties and Corrosion Behavior of Al-Zn-Mg-Sc-Zr Alloy, Vacuum, 2022, 200, p 110995. https://doi.org/10.1016/j.vacuum.2022.110995

    Article  CAS  Google Scholar 

  13. W. Yang et al. Investigation of Mechanical and Corrosion Properties of an Al-Zn-Mg-Cu Alloy Under Various Ageing Conditions and Interface Analysis of η′ Precipitate, Mater. Des., 2015, 85, p 752–761. https://doi.org/10.1016/j.matdes.2015.06.183

    Article  CAS  Google Scholar 

  14. X. Xu, P. Zhang, R. Zhang et al. Effect of Multi-stage Solution on Microstructure and Properties of Al–10.5Zn–2.05Mg–1.02Cu–0.2Zr–0.923Ti Alloy Extrusion, Appl. Phys. A, 2020, 126, p 679. https://doi.org/10.1007/s00339-020-03868-w

    Article  CAS  Google Scholar 

  15. P. Dai et al. Nano-scale Precipitate Evolution and Mechanical Properties of 7085 Aluminum Alloy During Thermal Exposure, Mater. Sci. Eng. A, 2018, 729, p 411–422. https://doi.org/10.1016/j.msea.2018.05.092

    Article  CAS  Google Scholar 

  16. W. Yang et al. Precipitation Behaviour of Al-Zn-Mg-Cu Alloy and Diffraction Analysis from η′ Precipitates in Four Variants, J. Alloys Compd., 2014, 610, p 623–629. https://doi.org/10.1016/j.jallcom.2014.05.061

    Article  CAS  Google Scholar 

  17. L.K. Berg et al. GP-Zones in Al–Zn–Mg Alloys and their Role in Artificial Aging, Acta Mater., 2001, 49(17), p 3443–3451. https://doi.org/10.1016/S1359-6454(01)00251-8

    Article  CAS  Google Scholar 

  18. M. Dumont et al. Characterisation of the Composition and Volume Fraction of η′ and η Precipitates in an Al–Zn–Mg Alloy by a Combination of Atom Probe, Small-Angle X-ray Scattering and Transmission Electron Microscopy, Acta Mater., 2005, 53(10), p 2881–2892. https://doi.org/10.1016/j.actamat.2005.03.004

    Article  CAS  Google Scholar 

  19. Y. Fan et al. Comparisons of Age Hardening and Precipitation Behavior in 7075 Alloy Under Single and Double-Stage Aging Treatments, Met. Mater. Int., 2021, 27(10), p 4204–4215. https://doi.org/10.1007/s12540-020-00875-7

    Article  CAS  Google Scholar 

  20. K. Osamura, Precipitation Behavior and Change of Yield Strength During Artificial Aging Al-Zn-Mg-Cu Alloys, Light Metals, 1984, 34, p 517–524.

    Article  CAS  Google Scholar 

  21. T. Aoba, K. Masakazu and M. Hiromi, Effects of Aging on Mechanical Properties and Microstructure of Multi-directionally Forged 7075 Aluminum Alloy, Mater. Sci. Eng. A, 2017, 700, p 220–225. https://doi.org/10.1016/j.msea.2017.06.017

    Article  CAS  Google Scholar 

  22. A.L.M. Carvalho et al. Microstructure Analysis of 7050 Aluminum Alloy Processed by Multistage Aging Treatments, J. Alloy. Compd., 2022, 907, p 164400. https://doi.org/10.1016/j.jallcom.2022.164400

    Article  CAS  Google Scholar 

  23. Y. Zou et al. Effect of Ageing Temperature on Microstructure, Mechanical Property and Corrosion Behavior of Aluminum Alloy 7085, J. Alloys Compd., 2020, 823, p 1537. https://doi.org/10.1016/j.jallcom.2020.153792

    Article  CAS  Google Scholar 

  24. S.C. Jacumasso et al. Microstructural Characterization of Interrupted Aging on an AA7050 Aluminum Alloy, Mater. Charact., 2019, 152, p 180–187. https://doi.org/10.1016/j.matchar.2019.04.013

    Article  CAS  Google Scholar 

  25. J. Buha, R.N. Lumley and A.G. Crosky, Secondary Ageing in an Aluminium Alloy 7050, Mater. Sci. Eng. A, 2008, 492(1–2), p 1–10. https://doi.org/10.1016/j.msea.2008.02.039

    Article  CAS  Google Scholar 

  26. A.K. Vasudevan and R.D. Doherty, Grain Boundary Ductile Fracture in Precipitation Hardened Aluminum Alloys, Acta Metall., 1987, 35(6), p 1193–1219. https://doi.org/10.1016/0001-6160(87)90001-0

    Article  CAS  Google Scholar 

  27. J. Wloka, T. Hack and S. Virtanen, Influence of Temper and Surface Condition on the Exfoliation Behaviour of High Strength Al-Zn-Mg-Cu Alloys, Corros. Sci., 2007, 49(3), p 1437–1449. https://doi.org/10.1016/j.corsci.2006.06.033

    Article  CAS  Google Scholar 

  28. S.-Y. Chen et al. Effect of Heat Treatment on Stress Corrosion Cracking, Fracture Toughness and Strength of 7085 Aluminum Alloy, Trans. Nonferrous Met. Soc. China, 2014, 24(7), p 2320–2325. https://doi.org/10.1016/S1003-6326

    Article  CAS  Google Scholar 

  29. Y. Wang et al., Effect of Retrogression Treatments on Microstructure, Hardness and Corrosion Behaviors of Aluminum Alloy 7085, J. Alloys Compd., 2020, 814, p 152264. https://doi.org/10.1016/j.jallcom.2019.152264

    Article  CAS  Google Scholar 

  30. Y. Deng et al., Effects of Sc and Zr Microalloying Additions and Aging Time at 120 C on the Corrosion Behaviour of an Al–Zn–Mg Alloy, Corros. Sci., 2012, 65, p 288–298. https://doi.org/10.1016/j.corsci.2012.08.024

    Article  CAS  Google Scholar 

  31. J. Zuo et al., Effect of Deformation Induced Precipitation on Dynamic Aging Process and Improvement of Mechanical/Corrosion Properties AA7055 Aluminum Alloy, J. Alloys Compd., 2017, 708, p 1131–1140. https://doi.org/10.1016/j.jallcom.2017.03.091

    Article  CAS  Google Scholar 

  32. L. Li et al., Study on the Optimizing Mechanisms of Superior Comprehensive Properties of a Hot Spray Formed Al-Zn-Mg-Cu Alloy, Mater. Sci. Eng. A, 2019, 742, p 102–108. https://doi.org/10.1016/j.msea.2018.10.120

    Article  CAS  Google Scholar 

  33. P. Xie et al., Enhancing the Stress Corrosion Cracking Resistance of a Low-Cu Containing Al-Zn-Mg-Cu Aluminum Alloy by Step-Quench and Aging Heat Treatment, Corros. Sci., 2019, 161, p 1081. https://doi.org/10.1016/j.corsci.2019.108184

    Article  CAS  Google Scholar 

  34. Y. Luo et al., Effects of Cu and Ti Contents on Microstructure and Properties of Al-88 Zn-22 Mg-xCu-02 Zr-01 Sr-yTi Aluminum Alloy, J. Mater. Eng. Perform., 2022, 31, p 4495–4506. https://doi.org/10.1007/s11665-021-06567-6

    Article  CAS  Google Scholar 

  35. Y. Luo et al., Microstructure and Properties of T6I4 Aged 700-MPa-Grade Aluminum Alloy, J. Mater. Eng. Perform., 2022 https://doi.org/10.1007/s11665-022-06999-8

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully recognize the Equipment Pre-research Foundation of the 13th Five-Year Plan, Ministry of Development, Key Project No. 6140922010201 of the Central Military Commission of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojing Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, T., Chen, R., Xu, X. et al. Effect of Interrupted Aging–Retrogression Re-Aging Treatment on the Microstructure and Properties of Al-Zn-Mg-Cu Alloy. J. of Materi Eng and Perform 32, 6630–6641 (2023). https://doi.org/10.1007/s11665-022-07592-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07592-9

Keywords

Navigation