Skip to main content

Advertisement

Log in

A Strong Inhibitory Effect of Microbe-Induced Mineralization on Corrosion on Steel Surfaces

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Steel is an indispensable material in the modern construction industry. The economic loss and safety threats caused by steel corrosion are very serious each year. Some traditional measures, such as surface coating and corrosion inhibitors, have been implemented to mitigate steel degradation. These methods are typically environmentally unfriendly and uneconomical. Therefore, a novel, promising and “green” approach was investigated in this study for the protection of steel corrosion through the formation of organic-inorganic hybrid biofilms composed of calcite minerals and microbial extracellular polymeric substances in the presence of the biomineralized bacterium Paenibacillus. The surface morphologies and electrochemical tests revealed that the hybrid biofilm was dense and compact, providing a strong protective barrier for the steel. In addition, the mechanism by which bacteria inhibited steel corrosion was discussed carefully in this study. Hence, this study introduces a new perspective and an alternative for inhibiting steel corrosion.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability

Data will be made available on reasonable request.

References

  1. A. López, R. Bayón and F. Pagano, Tribocorrosion Behavior of Mooring High Strength Low Alloy Steels in Synthetic Seawater, Wear, 2015, 338–339, p 1–10.

    Google Scholar 

  2. X.G. Li, D.W. Zhang, Z.Y. Liu, Z. Li, C.W. Du and C.F. Dong, Materials Science: Share Corrosion Data, Nature, 2015, 527, p 441–442.

    CAS  Google Scholar 

  3. D.V. Andreeva, D. Fix, H. Mohwald and D.G. Shchukin, Self-healing Anticorrosion Coatings Based on pH-Sensitive Polyelectrolyte/Inhibitor Sandwich like Nanostructures, Adv. Mater., 2008, 20, p 2789–2794.

    CAS  Google Scholar 

  4. D.G. Shchukin, M. Zheludkevich, K. Yasakau, S. Lamaka, M.G.S. Ferreira and H. Mohwald, Layer-by-Layer Assembled Nanocontainers for Self-healing Corrosion Protection, Adv. Mater., 2006, 18, p 1672–1678.

    CAS  Google Scholar 

  5. A.S. Yaro, H. Al-Jendeel and A.A. Khadom, Cathodic Protection System of Copper-Zinc-Saline Water in Presence of Bacteria, Desalination, 2011, 270, p 193–198.

    CAS  Google Scholar 

  6. I.M. Mousaa, Gamma Irradiation Processed (Epoxidized Soybean Fatty Acids/Rho-substituted Aromatic Amines) Adducts as Corrosion Inhibitors for UV Curable Steel Coatings, Prog. Org. Coat., 2017, 111, p 220–230.

    CAS  Google Scholar 

  7. R. Jia, T. Unsal, D.K. Xu, Y. Lekbach and T.Y. Gu, Microbiologically Influenced Corrosion and Current Mitigation Strategies: A State of the Art Review, Int. Biodeterior. Biodegrad., 2018, 125, p 116–124.

    Google Scholar 

  8. F. Mansfeld, The interaction of bacteria and metal surfaces, Electrochim. Acta, 2007, 52, p 7670–7680.

    CAS  Google Scholar 

  9. F. Mansfeld, H. Hsu, D. Örnek, T.K. Wood and B.C. Syrettc, Corrosion Control Using Regenerative Biofilms on Aluminum 2024 and Brass in Different Media, J. Electrochem. Soc., 2002, 149, p B130–B138.

    CAS  Google Scholar 

  10. T. Unsal, E. Ilhan-Sungur, S. Arkan and N. Cansever, Effects of Ag and Cu Ions on the Microbial Corrosion of 316L Stainless Steel in the Presence of Desulfovibrio sp, Bioelectrochemistry, 2016, 110, p 91–99.

    CAS  Google Scholar 

  11. V.L. Finkenstadt, G.L. Cote and J.L. Willett, Corrosion Protection of lowcarbosteel Using Exopolysaccharide Coatings from Leuconostoc Mesenteroides, Biotechnol. Lett., 2011, 33, p 1093–1100.

    CAS  Google Scholar 

  12. H.Y. Tang, C. Yang, T. Ueki et al., Stainless Steel Corrosion via Direct Iron-to-Microbe Electron Transfer by Geobacter Species, ISME J., 2021, 15, p 3084–3093.

    CAS  Google Scholar 

  13. A. Tg, W.A. Di, B. Yl et al., Extracellular Electron Transfer in Microbial Biocorrosion, Curr. Opin. Electrochem., 2021, 29, p 100763.

    Google Scholar 

  14. A. Ez, A. Yl, B. Tg et al., Bioenergetics and Extracellular Electron Transfer in Microbial Fuel Cells and Microbial Corrosion, Curr. Opin. Electrochem., 2021, 31, p 100830.

    Google Scholar 

  15. A. Nagiub and F. Mansfeld, Microbiologically Influenced Corrosion Inhibition (MICI) Due to Bacterial Contamination, Mater. Corros., 2001, 52(11), p 817–826.

    CAS  Google Scholar 

  16. Y. Gao, D. Feng, M. Moradi et al., Inhibiting Corrosion of Aluminum Alloy 5083 Through Vibrio Species Biofilm, Corros. Sci., 2021, 180, 109188.

    CAS  Google Scholar 

  17. Z. Li, J. Zhou, X. Yuan, Xu. Yan, Xu. Dake, D. Zhang, D. Feng and F. Wang, Marine Biofilms with Significant Corrosion Inhibition Performance by Secreting Extracellular Polymeric Substances, ACS Appl. Mater. Interfaces., 2021, 13(39), p 47272–47282.

    CAS  Google Scholar 

  18. T. Liu, Z. Guo, Z. Zeng, N. Guo, Y. Lei, T. Liu, S. Sun, X. Chang, Y. Yin and X. Wang, Marine Bacteria Provide Lasting Anticorrosion Activity for Steel via Biofilm-Induced Mineralization, ACS Appl. Mater. Interfaces, 2018, 10, p 40317–40327.

    CAS  Google Scholar 

  19. N. Guo, Y. Wanga, X. Huia, Q. Zhaoa, Z. Zeng, S. Pana, Z. Guoa, Y. Yina and T. Liua, Marine Bacteria Inhibit Corrosion of Steel via Synergistic Biomineralization, J. Mater. Sci. Technol., 2021, 66, p 82–90.

    CAS  Google Scholar 

  20. A. Pedersen, Bacterial Corrosion of Iron in Seawater In situ, and in Aerobic and Anaerobic Model Systems, FEMS Microbiol. Lett., 2002, 86, p 139–147.

    Google Scholar 

  21. S.K. Karn, G. Fang and J. Duan, Bacillus sp. Acting as Dual Role for Corrosion Induction and Corrosion Inhibition with Carbon Steel (CS), Front. Microbiol., 2017, 8, p 2038.

    Google Scholar 

  22. M.S. Khan, C. Yang, Y. Zhao, H. Pan, J. Zhao, M.B. Shahzad, S.K. Kolawole, I. Ullah and K. Yang, An Induced Corrosion Inhibition of X80 Steel by Using Marine Bacterium Marinobacter Salsuginis, Colloids Surfaces B: Biointerfaces, 2020, 189, p 110858.

    CAS  Google Scholar 

  23. C. Qian and Q. Zhan, Bioremediation of Heavy Metal Ions by Phosphateâ mineralization Bacteria and Its Mechanism, J. Chin. Chem. Soc., 2016, 63(7), p 1.

    Google Scholar 

  24. Q. Zhan, C. Qian and H. Yi, Microbial-Induced Mineralization and Cementation of Fugitive Dust and Engineering Application, Constr. Build. Mater., 2016, 121, p 1.

    Google Scholar 

  25. Y. Chen, C. Qian, H. Zhou and S. Das, Characterization Methods for the Effect of Microbial Mineralization on the Microstructure of Hardened C3S Paste, Adv. Mater. Sci. Eng., 2020, 2020, p 1.

    CAS  Google Scholar 

  26. Y. Su, J. Feng, P. Jin and C. Qian, Influence of Bacterial Self-healing Agent on Early Age Performance of Cement-Based Materials, Constr. Build. Mater., 2019, 218, p 1.

    Google Scholar 

  27. B.N. Grgur, V. Lazić, D. Stojić and R. Rudolf, Electrochemical Testing of Noble Metal Dental Alloys: The Influence of Their Chemical Composition on the Corrosion Resistance, Corros. Sci., 2021, 184, p 109412.

    CAS  Google Scholar 

  28. B.A. Abdulhessein and A.M. Ali, Green Corrosion Inhibitor of Low Carbon Steel in Acidic Media by Pectin Nanoparticles Using Potentiostatic and Weight Losses Method, Mater. Sci. Forum, 2021, 6198, p 1.

    Google Scholar 

  29. Y. Shen, Study of Pitting Corrosion Inhibition Effect on Aluminum Alloy in Seawater by Biomineralized Film, Bioelectrochemistry, 2020, 132, 107408.

    CAS  Google Scholar 

  30. T. Zheng and C. Qian, Influencing Factors and Formation Mechanism of CaCO3 Precipitation Induced by Microbial Carbonic Anhydrase, Process Biochem., 2020, 91, p 271–281.

    CAS  Google Scholar 

  31. ASTM, G. Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens. American Society for Testing and Materials, 2003.

  32. S. Fonna, I.B.M. Ibrahim, S. Huzni, M. Ikhsan and S. Thalib, Investigation of Corrosion Products Formed on the Surface of Carbon Steel Exposed in Banda Aceh’s Atmosphere, Heliyon, 2021, 7(4), p e06608.

    CAS  Google Scholar 

  33. K. Xiao et al., Corrosion Products and Formation Mechanism During Initial Stage of Atmospheric Corrosion of Carbon Steel, J. Iron Steel Res. (Int.), 2008, 15(5), p 42–48.

    CAS  Google Scholar 

  34. Y. Oppenheimer-Shaanan, O. Sibony-Nevo, Z. Bloom-Ackermann, R. Suissa, N. Steinberg, E. Kartvelishvily, V. Brumfeld and I. Kolodkin-Gal, Spatio-Temporal Assembly of Functional Mineral Scaffolds within Microbial Biofilms, NPJ Biofilms Microbiol., 2016, 2, p 15031–15041.

    Google Scholar 

  35. B. Pokroy, J.P. Quintana, E.N. Caspi, A. Berner and E. Zolotoyabko, Anisotropic Lattice Distortions in Biogenic Aragonite, Nat. Mater., 2004, 3, p 900–902.

    CAS  Google Scholar 

  36. National Academies of Sciences, Engineering, and Medicine, Transportation Research Board, National Cooperative Highway Research Program. Electrochemical Test Methods to Evaluate the Corrosion Potential of Earthen Materials. National Academies Press, 2021–02–11.

  37. H. Ma, Y. Gu, H. Gao et al., Microstructure, Chemical Composition and Local Corrosion Behavior of a Friction Stud Welding Joint, J. Mater. Eng. Perform, 2018, 27, p 666–676.

    CAS  Google Scholar 

  38. J. Wu, D. Zhang, P. Wang et al., The Influence of Desulfovibrio sp and Pseudoalteromonas sp on the Corrosion of Q235 Carbon Steel in Natural Seawater, Corros. Sci. J. Environ. Degrad. Mater. Control, 2016, 112, p 552–562. https://doi.org/10.1016/j.corsci.2016.04.047

    Article  CAS  Google Scholar 

  39. R. Jia, J.L. Tan, P. Jin, D.J. Blackwood, D.K. Xu and T.Y. Gu, Effects of Biogenic H2S on the Microbiologically Influenced Corrosion of C1018 Carbon Steel by Sulfate Reducing Desulfovibrio Vulgaris Biofilm, Corros. Sci., 2018, 130, p 1–11.

    CAS  Google Scholar 

  40. M. Dubiel, C.H. Hsu, C.C. Chien, F. Mansfeld and D.K. Newman, Microbial Iron Respiration can Protect Steel from Corrosion, Appl. Environ. Microbiol., 2002, 68, p 1440–1445.

    CAS  Google Scholar 

  41. L. Hall-Stoodley, J.W. Costerton and P. Stoodley, Bacterial Biofilms: From the Natural Environment to Infectious Diseases, Nat. Rev. Microbiol., 2004, 2, p 95–108.

    CAS  Google Scholar 

  42. A. Jayaraman, F.B. Mansfeld and T.K. Wood, Inhibiting Sulfate reducing Bacteria in Biofilms by Expressing the Antimicrobial Peptides Indolicid in and Bactenecin, J. Ind. Microbiol. Biotechnol., 1999, 22, p 167–175.

    CAS  Google Scholar 

  43. M. Moradi, T. Xiao and Z.L. Song, Investigation of Corrosion Inhibitory Process of Marine Vibrio neocaledonicus sp Bacterium for Carbon Steel, Corrosion. Sci., 2015, 100, p 186–193.

    CAS  Google Scholar 

  44. T. Zheng, Y. Su, C. Qian and H. Zhou, Low Alkali Sulpho-Aluminate Cement Encapsulated Microbial Spores for Self-healing Cement-Based Materials, Biochem. Eng. J., 2020, 163, p 1.

    CAS  Google Scholar 

  45. Z. Tianwen, S. Yilin, Z. Xuan, Z. Hengyi and Q. Chunxiang, Effect and Mechanism of Encapsulation-Based Spores on Self-Healing Concrete at Different Curing Ages, ACS Appl. Mater. Interfaces, 2020, 12(47), p 1.

    Google Scholar 

Download references

Acknowledgments

The financial support provided by the National Nature Science Foundation of China (Grant No. 51738003) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunxiang Qian.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper; this article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, W., Qian, C. & Rui, Y. A Strong Inhibitory Effect of Microbe-Induced Mineralization on Corrosion on Steel Surfaces. J. of Materi Eng and Perform 32, 6957–6973 (2023). https://doi.org/10.1007/s11665-022-07586-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07586-7

Keywords

Navigation