Skip to main content
Log in

Influence of Electron Beam Welding Parameters on the Properties of Dissimilar Copper–Stainless Steel Overlapped Joints

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The paper deals with the analysis of the influence of welding parameters on the properties of dissimilar copper–stainless steel welded joints produced with electron beam welding. Electrolytic tough pitch (ETP) copper and AISI304 stainless steel were used as base materials. The thickness of base metals is 1.0 mm. Overlapped welded joints were manufactured. Different welding parameters were tested. Full factorial design of experiment (DoE) based on 3 factors and 2 levels was used within the study. Beam currents used for electron beam welding were 40 and 70 mA and welding speeds 30 and 40 mm/s. Welded joints were produced with and without beam oscillation. DoE results showed that the beam current had the highest influence on weld width at the surface of dissimilar metals. It was found that the application of higher beam current and higher welding speed resulted in the formation of large spiking at the weld root. Spiking was observed when beam current of 70 mA and welding speed of 40 mm/s were used independent on beam oscillation. Lower welding speed resulted in elimination of spiking. Large spiking could be associated with the capillary effect. Beam oscillation possessed the highest influence on the copper intermixing in the weld metal. Application of beam oscillation resulted in widening of weld metal at the surface, at the interface line between sheets and weld depth, as well. Furthermore, the beam oscillation shows the highest effect on the tensile strength of welded joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. J. Kar, S.K. Roy, and G.G. Roy, Effect of Beam Oscillation on Electron Beam Welding of Copper with AISI-304 Stainless Steel, J. Mater. Process. Technol., 2016, 233, p 174–185. https://doi.org/10.1016/j.jmatprotec.2016.03.001

    Article  CAS  Google Scholar 

  2. MSt.. Węglowski, S. Błacha, and A. Phillips, Electron Beam Welding: Techniques and Trends: Review, Vacuum, 2016, 130, p 72–92. https://doi.org/10.1016/j.vacuum.2016.05.004

    Article  CAS  Google Scholar 

  3. J. Li, Y. Cai, F. Yan, C. Wang, Z. Zhu, and C. Hu, Porosity and Liquation Cracking of Dissimilar Nd:YAG Laser Welding of SUS304 Stainless Steel to T2 Copper, Opt. Laser Technol., 2020, 122, p 105881. https://doi.org/10.1016/j.optlastec.2019.105881

    Article  CAS  Google Scholar 

  4. J. Xin, H. Zhang, W. Sun, C. Huang, S. Wang, J. Wei, W. Wang, Z. Fang, D. Wu, and L. Li, The Microstructures and Mechanical Properties of Dissimilar Laser Welding of Copper and 316L Stainless Steel with Ni Interlayer, Cryogenics, 2021, 118, p 103344. https://doi.org/10.1016/j.cryogenics.2021.103344

    Article  CAS  Google Scholar 

  5. A. Mannucci, I. Tomashchuk, V. Vignal, P. Sallamand, and M. Duband, Parametric Study of Laser Welding of Copper to Austenitic Stainless Steel, Procedia CIRP, 2018, 74, p 450–455. https://doi.org/10.1016/j.procir.2018.08.160

    Article  Google Scholar 

  6. S.G. Shiri, M. Nazarzadeh, M. Sharifitabar, and M.S. Afarani, Gas Tungsten Arc Welding of CP-Copper to 304 Stainless Steel Using Different Filler Materials, Trans. Nonferrous Metals Soc. China, 2012, 22, p 2937–2942. https://doi.org/10.1016/S1003-6326(11)61553-7

    Article  CAS  Google Scholar 

  7. X. Zhang, L. Li, and F. Liou, Additive Manufacturing of Stainless Steel – Copper Functionally Graded Materials via Inconel 718 Interlayer, J. Mater. Res. Technol., 2021, 15, p 2045–2058. https://doi.org/10.1016/j.jmrt.2021.09.027

    Article  CAS  Google Scholar 

  8. S.K. Dinda, J. Kar, G.G. Roy, W. Kockelmann, and P. Srirangam, Texture Mapping in Electron Beam Welded Dissimilar Copper-Stainless Steel Joints by Neutron Diffraction, Vacuum, 2020, 181, p 109668. https://doi.org/10.1016/j.vacuum.2020.109668

    Article  CAS  Google Scholar 

  9. I. Magnabosco, P. Ferro, F. Bonollo, and L. Arnberg, An Investigation of Fusion Zone Microstructures in Electron Beam Welding of Copper-Stainless Steel, Mater. Sci. Eng. A, 2006, 424, p 163–173. https://doi.org/10.1016/j.msea.2006.03.096

    Article  CAS  Google Scholar 

  10. Z. Sun and R. Karppi, The Application of Electron Beam Welding for the Joining of Dissimilar Metals: An Overview, J. Mater. Process. Technol., 1996, 59, p 257–267. https://doi.org/10.1016/0924-0136(95)02150-7

    Article  Google Scholar 

  11. K. Antony and T.R. Rakeshnath, Dissimilar Laser Welding of Commercially Pure Copper and Stainless Steel 316L, Mater. Today Proc., 2020, 26, p 369–372. https://doi.org/10.1016/j.matpr.2019.12.043

    Article  CAS  Google Scholar 

  12. G. Feng, Y. Wang, W. Luo, L. Hu, and D. Deng, Comparison of Welding Residual Stress and Deformation Induced by Local Vacuum Electron Beam Welding and Metal Active Gas Arc Welding in a Stainless Steel Thick-Plate Joint, J. Mater. Res. Technol., 2021, 13, p 1967–1979. https://doi.org/10.1016/j.jmrt.2021.05.105

    Article  CAS  Google Scholar 

  13. B. Zhang, J. Zhao, X. Li, and J. Feng, Electron Beam Welding of 304 Stainless Steel to QCr0.8 Copper Alloy with Copper Filler Wire, Trans. Nonferrous Metals Soc. China, 2014, 24, p 4059–4066. https://doi.org/10.1016/S1003-6326(14)63569-X

    Article  CAS  Google Scholar 

  14. J. Kar, S.K. Dinda, G.G. Roy, S.K. Roy, and P. Srirangam, X-Ray Tomography Study on Porosity in Electron Beam Welded Dissimilar Copper-304SS Joints, Vacuum, 2018, 149, p 200–206. https://doi.org/10.1016/j.vacuum.2017.12.038

    Article  CAS  Google Scholar 

  15. Y. Arata, K. Terai, and S. Matsuda, Title Study on Characteristics of Weld Defect and Its Prevention in Electron Beam Welding (Report I): Characteristics of Weld Porosities (1973)

  16. D.A. Schauer and W.H. Ciedt, Prediction of Electron Beam Welding Spiking Tendency, 59. AWS annual meeting, New Orleans, LA, USA, 3 April 1978. https://www.osti.gov/servlets/purl/5018944

  17. P.K.C. Kanigalpula, S. Jaypuria, D.K. Pratihar, and M.N. Jha, Experimental Investigations, Input–Output Modeling, and Optimization of Spiking Phenomenon in Electron Beam Welding of ETP Copper Plates, Measurement, 2018, 129, p 302–318. https://doi.org/10.1016/j.measurement.2018.07.040

    Article  Google Scholar 

  18. I. Tomashchuk, P. Sallamand, and J. Jean-Marie, Modeling of microstructures in dissimilar copper/stainless steel electron beam welds (2021)

  19. I.A. Segura, J. Mireles, D. Bermudez, C.A. Terrazas, L.E. Murr, K. Li, V.S.Y. Injeti, R.D.K. Misra, and R.B. Wicker, Characterization and Mechanical Properties of Cladded Stainless Steel 316L with Nuclear Applications Fabricated Using Electron Beam Melting, J. Nucl. Mater., 2018, 507, p 164–176. https://doi.org/10.1016/j.jnucmat.2018.04.026

    Article  CAS  Google Scholar 

  20. T. Wang, B. Zhang, and J. Feng, Influences of Different Filler Metals on Electron Beam Welding of Titanium Alloy to Stainless Steel, Trans. Nonferrous Metals Soc. China, 2014, 24, p 108–114. https://doi.org/10.1016/S1003-6326(14)63034-X

    Article  CAS  Google Scholar 

  21. T. Wang, B. Zhang, G. Chen, and J. Feng, High Strength Electron Beam Welded Titanium-Stainless Steel Joint with V/Cu Based Composite Filler Metals, Vacuum, 2013, 94, p 41–47. https://doi.org/10.1016/j.vacuum.2013.01.015

    Article  CAS  Google Scholar 

  22. M. Shakil, M. Ahmad, N.H. Tariq, B.A. Hasan, J.I. Akhter, E. Ahmed, M. Mehmood, M.A. Choudhry, and M. Iqbal, Microstructure and Hardness Studies of Electron Beam Welded Inconel 625 and Stainless Steel 304L, Vacuum, 2014, 110, p 121–126. https://doi.org/10.1016/j.vacuum.2014.08.016

    Article  CAS  Google Scholar 

  23. S.V. Kuryntsev, A.E. Morushkin, and AKh. Gilmutdinov, Fiber Laser Welding of Austenitic Steel and Commercially Pure Copper Butt Joint, Opt. Lasers Eng., 2017, 90, p 101–109. https://doi.org/10.1016/j.optlaseng.2016.10.008

    Article  Google Scholar 

  24. S.L. Sharma, To Study on Spiking Phenomena in Electron Beam Welding, GRD J. Eng., 2019, 4, p 9–22

    Google Scholar 

  25. J. Li, Q. Sun, Y. Liu, Z. Zhen, Q. Sun, and J. Feng, Melt Flow and Microstructural Characteristics in Beam Oscillation Superimposed Laser Welding of 304 Stainless Steel, J. Manuf. Process., 2020, 50, p 629–637. https://doi.org/10.1016/j.jmapro.2019.12.053

    Article  Google Scholar 

  26. B.T. Voonna, S.S. Angara, J.S. Vavilapalli, Y.V. Datla, and S.K. Selvaraj, Some Studies of Nanoparticle Properties for Dissimilar Materials on the Surface Features Created by EBW and LBW, Mater. Today Proc., 2021, 46, p 7271–7283. https://doi.org/10.1016/j.matpr.2020.12.982

    Article  Google Scholar 

  27. S. Guo, Q. Zhou, J. Kong, Y. Peng, Y. Xiang, T. Luo, K. Wang, and J. Zhu, Effect of Beam Offset on the Characteristics of Copper/304stainless Steel Electron Beam Welding, Vacuum, 2016, 128, p 205–212. https://doi.org/10.1016/j.vacuum.2016.03.034

    Article  CAS  Google Scholar 

  28. I. Allegretta, S. Legrand, M. Alfeld, C.E. Gattullo, C. Porfido, M. Spagnuolo, K. Janssens, and R. Terzano, SEM-EDX Hyperspectral Data Analysis for the Study of Soil Aggregates, Geoderma, 2022, 406, p 115540. https://doi.org/10.1016/j.geoderma.2021.115540

    Article  Google Scholar 

  29. S. Zhai, J. Liu, D. Lan, and S. Wang, High Temperature Tensile Strength of Large Size Al2O3/ZrO2(Y2O3) Directionally Solidified Eutectic Ceramics, Mater. Lett., 2022, 307, p 130950. https://doi.org/10.1016/j.matlet.2021.130950

    Article  CAS  Google Scholar 

  30. A.E. Odermatt, V. Ventzke, F. Dorn, R. Dinsé, P. Merhof, and N. Kashaev, Effect of Laser Beam Welding on Microstructure, Tensile Strength and Fatigue Behaviour of Duplex Stainless Steel 2205, J. Manuf. Process., 2021, 72, p 148–158. https://doi.org/10.1016/j.jmapro.2021.10.020

    Article  Google Scholar 

  31. N. Thomas, A. Mathew, K. George, N. Thomas, S. Thampi, A. Biradar, and M. Rijesh, Microstructural and Mechanical Properties Evaluation of Tungsten Inert Gas-Welded 316 Stainless Steel and Pure Copper Joint, Metall. Microstruct. Anal., 2020, 9, p 678–684. https://doi.org/10.1007/s13632-020-00682-x

    Article  CAS  Google Scholar 

  32. R. Huang, X. Huang, D. Wang, and L. Yang, Effect of Swing-Spiral-Trajectory on Pulsed Fiber Laser Welding Stainless Steel/Copper Dissimilar Metals, Opt. Laser Technol., 2022, 156, p 108516. https://doi.org/10.1016/j.optlastec.2022.108516

    Article  CAS  Google Scholar 

  33. E. Oliveira do Nascimento, M.J. Pires Becatti, L.V.E. Caldas, and L. Nonato do Oliveira, Design of Experiments (DoE) Method for Solar Protective Films via UV–Vis and NIR Spectrophotometry Measurements, J. Lumin., 2021 https://doi.org/10.1016/j.jlumin.2021.118558

    Article  Google Scholar 

  34. M. Saravana Kumar and S. Rashia Begum, Simulation of Hybrid (LASER-TIG) Welding of Stainless Steel Plates Using Design of Experiments, Mater. Today Proc., 2021, 37, p 3755–3758. https://doi.org/10.1016/j.matpr.2020.10.563

    Article  Google Scholar 

  35. P.J. Macurová and D. Tošenovský, Noskievičová: Statistické Metody pro Zlepšování Jakosti:[Recenze], Ekonomická revue, 2000, 3, p 110–111

    Google Scholar 

  36. M.A. Ahmad, A.K. Sheikh, and K. Nazir, Design of Experiment Based Statistical Approaches to Optimize Submerged Arc Welding Process Parameters, ISA Trans., 2019, 94, p 307–315. https://doi.org/10.1016/j.isatra.2019.04.003

    Article  Google Scholar 

  37. J. Raute, T. Jokisch, M. Biegler, and M. Rethmeier, Effects on Crack Formation of Additive Manufactured Inconel 939 Sheets during Electron Beam Welding, Vacuum, 2021 https://doi.org/10.1016/j.vacuum.2021.110649

    Article  Google Scholar 

  38. R. Ajith Raj and M. Dev, Modeling and Prediction of Mechanical Strength in Electron Beam Welded Dissimilar Metal Joints of Stainless Steel 304 and Copper Using Grey Relation Analysis, Int. J. Eng. Technol, 2018, 7, p 198–201.

    Article  Google Scholar 

  39. F. Yan, Y. Qin, B. Tang, Y. Zhou, Z. Gao, Y. Hu, C. Hu, Z. Xiao, Z. Xiao, and C. Wang, Effects of Beam Oscillation on Microstructural Characteristics and Mechanical Properties in Laser Welded Steel-Copper Joints, Opt. Laser Technol., 2022, 148, p 107739. https://doi.org/10.1016/j.optlastec.2021.107739

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was carried out under the support of Slovak Research and Development Agency, projects No. APVV-SK-AT-20-0013 (Bilateral project Slovakia–Austria SK-AT 2020), APVV-18-0116 and the International Cooperation in Higher Education Department of the OeAD (“Research on electron beam weldability of hard to join dissimilar materials” No. SK14/2021). The paper was prepared also with the support of the Ministry of Education, Youth, and Sports of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Sahul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlík, M., Sahul, M., Sahul, M. et al. Influence of Electron Beam Welding Parameters on the Properties of Dissimilar Copper–Stainless Steel Overlapped Joints. J. of Materi Eng and Perform 32, 6974–6994 (2023). https://doi.org/10.1007/s11665-022-07585-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07585-8

Keywords

Navigation