Skip to main content
Log in

Performance Evaluation and Parametric Optimization of Turning Operation of Ti6Al-4V Alloy Under Dry and Minimum Quantity Lubrication Cutting Environments

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Turning operation of Ti6Al-4V alloy using conventional lathe is challenging owing to high hardness, high strength to weight ratio of the work material. Past researcher works have claimed that as compared to dry machining, cutting using minimum quantity lubrication (MQL) technique can enhance the quality of machining output measures. But, at the same time, the use of different cutting fluids is found hazardous, non-eco-friendly, vulnerable to human health and surrounding. To overcome this problem, the present research work investigates the effect of using soybean oil in MQL for turning of Ti6Al-4V alloy. A comparative study on the performance of turning operation under dry and MQL environments has been carried out. The effects of the machining parameters such as speed, feed and depth of cut on machining quality measures such as material removal rate (MRR), tool wear rate (TWR) and surface roughness (SR) are also investigated. Also, to further enhance the quality of machining performance measures, gray correlation-based technique for order of preference by similarity to ideal solution (GC-TOPSIS) approach combined with fuzzy weights is employed to identify the optimal parametric combination. It has been found that to attain the best machining outputs, the optimal parametric combination should be set as speed = 575 rpm, feed rate = 0.02 mm/rev, and depth of cut = 0.1 mm. On the other hand, turning of Ti6Al-4V alloy under MQL cutting environment has shown significant improvement of 11, 18.18, and 46.39% for MRR, TWR, and SR, respectively, as compared to dry cutting. Analysis of variance results identifies spindle speed as the most influential processes parameter for both the dry and MQL cutting environments in determining the quality of measured response values. The developed surface plots will help a process engineer in selecting the most appropriate combination of process parameter for attaining desired performance measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. Poondla, T.S. Srivatsan, A. Patnaik and M. Petraroli, A Study of the Microstructure and Hardness of Two Titanium Alloys: Commercially Pure and Ti-6Al-4V, J. Alloys Compd., 2009, 486(1-2), p 162–167.

    Article  CAS  Google Scholar 

  2. J.P. Davim Ed., Machining of Titanium Alloys, Springer, Berlin, 2014

    Google Scholar 

  3. K. Leksycki and J.B. Królczyk, Comparative Assessment of the Surface Topography for Different Optical Profilometry Techniques After Dry Turning of Ti6Al4V Titanium Alloy, Measurement, 2021, 169, 108378.

    Article  Google Scholar 

  4. P. Fernández-Lucio, I. Villarón-Osorno, O.P. Neto, E. Ukar, L.L. de Lacalle and A.G. del Val, Effects of Laser-Textured on Rake Face in Turning PCD Tools for Ti6Al4V, J. Market. Res., 2021, 15, p 177–188.

    Google Scholar 

  5. S. Pervaiz, I. Deiab, A. Rashid and M. Nicolescu, Minimal Quantity Cooling Lubrication in Turning of Ti6Al4V: Influence on Surface Roughness, Cutting Force and Tool Wear, Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf., 2017, 231(9), p 1542–1558.

    Article  CAS  Google Scholar 

  6. A. Bordin, S. Sartori, S. Bruschi and A. Ghiotti, Experimental Investigation on the Feasibility of Dry and Cryogenic Machining as Sustainable Strategies When Turning Ti6Al4V Produced by Additive Manufacturing, J. Clean. Prod., 2017, 142, p 4142–4151.

    Article  CAS  Google Scholar 

  7. K.K. Gajrani, D. Ram and M.R. Sankar, Biodegradation and Hard Machining Performance Comparison of Eco-Friendly Cutting Fluid and Mineral Oil Using Flood Cooling and Minimum Quantity Cutting Fluid Techniques, J. Clean. Prod., 2017, 165, p 1420–1435.

    Article  CAS  Google Scholar 

  8. K.K. Gajrani, P.S. Suvin, S.V. Kailas and M.R. Sankar, Hard Machining Performance of Indigenously Developed Green Cutting Fluid Using Flood Cooling and Minimum Quantity Cutting Fluid, J. Clean. Prod., 2019, 206, p 108–123.

    Article  CAS  Google Scholar 

  9. J.P. Davim Ed., Sustainable Manufacturing, John Wiley & Sons, Hoboken, NJ, 2013

    Google Scholar 

  10. J.P. Davim Ed., Green Manufacturing Processes and Systems, Springer, Berlin, 2013

    Google Scholar 

  11. S.A. Lawal, I.A. Choudhury and Y. Nukman, A Critical Assessment of Lubrication Techniques in Machining Processes: A Case for Minimum Quantity Lubrication using Vegetable Oil-Based Lubricant, J. Clean. Prod., 2013, 41, p 210–221.

    Article  Google Scholar 

  12. Y. Zhang, C. Li, M. Yang, D. Jia, Y. Wang, B. Li, Y. Hou, N. Zhang and Q. Wu, Experimental Evaluation of Cooling Performance by Friction Coefficient and Specific Friction Energy in Nanofluid Minimum Quantity Lubrication Grinding with Different Types of Vegetable Oil, J. Clean. Prod., 2016, 139, p 685–705.

    Article  CAS  Google Scholar 

  13. S.S. Gill, R. Singh, H. Singh and J. Singh, Wear Behaviour of Cryogenically Treated Tungsten Carbide Inserts Under Dry and Wet Turning Conditions, Int. J. Mach. Tools Manuf, 2009, 49(3-4), p 256–260.

    Article  Google Scholar 

  14. D. Carou, E.M. Rubio, C.H. Lauro and J.P. Davim, Experimental Investigation on Surface Finish During Intermittent Turning of UNS M11917 Magnesium Alloy Under Dry and Near Dry Machining Conditions, Measurement, 2014, 56, p 136–154.

    Article  Google Scholar 

  15. N. Anand, A.S. Kumar and S. Paul, Effect of Cutting Fluids Applied in MQCL Mode on Machinability of Ti-6Al-4V, J. Manuf. Process., 2019, 43, p 154–163.

    Article  Google Scholar 

  16. A. Attanasio, M. Gelfi, C. Giardini and C.A.R.L.O. Remino, Minimal Quantity Lubrication in Turning: Effect on Tool Wear, Wear, 2006, 260(3), p 333–338.

    Article  CAS  Google Scholar 

  17. V.M. Luchesi and R.T. Coelho, Experimental Investigations of Heat Transfer Coefficients of Cutting Fluids in Metal Cutting Processes: Analysis of Workpiece Phenomena in a Given Case Study, Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf., 2012, 226(7), p 1174–1184.

    Article  Google Scholar 

  18. J.P. Davim, P.S. Sreejith and J. Silva, Turning of Brasses using Minimum Quantity of Lubricant (MQL) and Flooded Lubricant Conditions, Mater. Manuf. Processes, 2007, 22(1), p 45–50.

    Article  CAS  Google Scholar 

  19. A.K. Nandi and J.P. Davim, A Study of Drilling Performances with Minimum Quantity of Lubricant using Fuzzy Logic Rules, Mechatronics, 2009, 19(2), p 218–232.

    Article  Google Scholar 

  20. R. Furness, A. Shih, D. Stephenson, and B. Tai, Minimum Quantity Lubrication for Sustainable Machining. In Encyclopedia of Sustainable Technologies, 2017, p 477–485.

  21. E. Suneesh and M. Sivapragash, Parameter Optimisation to Combine Low Energy Consumption with High Surface Integrity in Turning Mg/Al2O3 Hybrid Composites Under Dry and MQL Conditions, J. Braz. Soc. Mech. Sci. Eng., 2017, 41(2), p 1–23.

    Google Scholar 

  22. J.P. Davim Ed., Statistical and Computational Techniques in Manufacturing, Springer Science & Business Media, Berlin, 2012

    Google Scholar 

  23. R. Viswanathan, S. Ramesh and V. Subburam, Measurement and Optimization of Performance Characteristics in Turning of Mg Alloy Under Dry and MQL Conditions, Measurement, 2018, 120, p 107–113.

    Article  Google Scholar 

  24. R. Singh, J.S. Dureja, M. Dogra and J.S. Randhawa, Optimization of Machining Parameters Under MQL Turning of Ti-6Al-4V Alloy with Textured Tool Using Multi-attribute Decision-Making Methods, World J. Eng., 2019, 16(5), p 648–659.

    Article  CAS  Google Scholar 

  25. S. Chakraborty and S. Chakraborty, A Scoping Review on the Applications of MCDM Techniques for Parametric Optimization of Machining Processes, Arch. Comput. Methods Eng., 2022 https://doi.org/10.1007/s11831-022-09731-w

    Article  Google Scholar 

  26. M. Mia, A. Rifat, M.F. Tanvir, M.K. Gupta, M.J. Hossain and A. Goswami, Multi-objective Optimization of Chip-Tool Interaction Parameters Using Grey-Taguchi Method in MQL-Assisted Turning, Measurement, 2018, 129, p 156–166.

    Article  Google Scholar 

  27. P.B. Zaman, M.N. Sultana and N.R. Dhar, Multi-variant Hybrid Techniques Coupled with Taguchi in Multi-response Parameter Optimisation for Better Machinability of Turning Alloy Steel, Adv. Mater. Process. Technol., 2021 https://doi.org/10.1080/2374068X.2021.1945302

    Article  Google Scholar 

  28. N.A. Sristi, P.B. Zaman and N.R. Dhar, Multi-response Optimization of Hard Turning Parameters: A Comparison Between Different Hybrid Taguchi-Based MCDM Methods, Int. J. Interact. Des. Manuf., 2022 https://doi.org/10.1007/s12008-022-00849-6

    Article  Google Scholar 

  29. V.N. Gaitonde, S.R. Karnik and J.P. Davim, Multiperformance Optimization in Turning of Free-Machining Steel Using Taguchi Method and Utility Concept, J. Mater. Eng. Perform., 2009, 18(3), p 231–236.

    Article  CAS  Google Scholar 

  30. S. Guha, B. Sharma and S. Das, Parametric Optimisation and Experimental Investigation on the Turning Process by Grey-fuzzy Logic Approach During Machining on EN-31 Alloy Steel, Advances in Mechanical and Industrial Engineering. P.C. Mishra, M.M. Noor, A.T. Hoang Ed., CRC Press, Boca Raton, FL, 2022, p 288–294

    Chapter  Google Scholar 

  31. L.N. Lopez de Lacalle, A. Lamikiz, J.A. Sanchez and I. Cabanes, Cutting Conditions and Tool Optimization in the High-Speed Milling of Aluminium Alloys, Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf., 2001, 215(9), p 1257–1269.

    Article  Google Scholar 

  32. P.P. Das and S. Chakraborty, Application of Grey Correlation-Based EDAS Method for Parametric Optimization of Non-traditional Machining Processes, Sci. Iran., 2022, 29(2), p 864–882.

    Google Scholar 

  33. P.P. Das and S. Chakraborty, Application of Grey-PROMETHEE Method For Parametric Optimization of a Green Powder Mixed EDM Process, Process Integr. Optim. Sustain., 2021, 5(3), p 645–661.

    Article  Google Scholar 

  34. G. Tian, H. Zhang, Y. Feng, D. Wang, Y. Peng and H. Jia, Green Decoration Materials Selection Under Interior Environment Characteristics: A Grey-Correlation Based Hybrid MCDM Method, Renew. Sustain. Energy Rev., 2018, 81, p 682–692.

    Article  Google Scholar 

  35. A.P. Tiwary and I. Shivakoti, Laser Beam Micromarking on Inconel 625 Superalloy, Lasers Eng., 2021, 50(1-3), p 173–191.

    CAS  Google Scholar 

  36. M. Elbah, H. Laouici, S. Benlahmidi, M. Nouioua and M.A. Yallese, Comparative Assessment of Machining Environments (Dry, Wet and MQL) in Hard Turning of AISI 4140 Steel with CC6050 Tools, Int. J. Adv. Manuf. Technol., 2019, 105(5), p 2581–2597.

    Article  Google Scholar 

  37. J.P. Davim and L. Figueira, Comparative Evaluation of Conventional and Wiper Ceramic Tools on Cutting Forces, Surface Roughness, and Tool Wear in Hard Turning AISI D2 Steel, Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf., 2007, 221(4), p 625–633.

    Article  CAS  Google Scholar 

  38. V.V. Lakshmi, K.V. Subbaiah, A.V. Kothapalli and K. Suresh, Parametric Optimization while Turning Ti-6Al-4V Alloy in Mist-MQCL (Green Environment) using the DEAR Method, Manuf. Rev., 2020, 7, p 38.

    CAS  Google Scholar 

  39. S. Yousefi and M. Zohoor, Effect of Cutting Parameters on the Dimensional Accuracy and Surface Finish in the Hard Turning of MDN250 Steel with Cubic Boron Nitride Tool, for Developing a Knowledged Base Expert System, Int. J. Mech. Mater. Eng., 2019, 14(1), p 1–13.

    Article  Google Scholar 

  40. S. Guha, P.P. Das and S. Chakraborty, Improvement in the Performance with Less Stiff Air Layer Formation Around the Rubber Tube-Pasted Grinding Wheel, Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., 2019, 233(15), p 5175–5189.

    Article  Google Scholar 

  41. D.I. Lalwani, N.K. Mehta and P.K. Jain, Experimental Investigations of Cutting Parameters Influence on Cutting Forces and Surface Roughness in Finish Hard Turning of MDN250 Steel, J. Mater. Process. Technol., 2008, 206(1-3), p 167–179.

    Article  CAS  Google Scholar 

  42. S. Palani, U. Natarajan and M. Chellamalai, Multiple-Response Modelling and Optimisation of Micro-turning Machining Parameters using Response Surface Method, Int. J. Mater. Eng. Innov., 2011, 2(3-4), p 288–309.

    Article  Google Scholar 

  43. S.P. Dwivedi, S. Kumar and A. Kumar, Effect of Turning Parameters on Surface Roughness of A356/5% SiC Composite Produced by Electromagnetic Stir Casting, J. Mech. Sci. Technol., 2012, 26(12), p 3973–3979.

    Article  Google Scholar 

  44. V.N. Gaitonde, S.R. Karnik, L. Figueira and J.P. Davim, Performance Comparison of Conventional and Wiper Ceramic Inserts in Hard Turning Through Artificial Neural Network Modeling, Int. J. Adv. Manuf. Technol., 2011, 52(1), p 101–114.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha Protim Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Das, P.P., Ladakhi, T.Y. et al. Performance Evaluation and Parametric Optimization of Turning Operation of Ti6Al-4V Alloy Under Dry and Minimum Quantity Lubrication Cutting Environments. J. of Materi Eng and Perform 32, 5353–5364 (2023). https://doi.org/10.1007/s11665-022-07492-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07492-y

Keywords

Navigation