Skip to main content
Log in

Investigation of Individual and Synergistic Effects of Salinity and Temperature on CO2 Corrosion Performance of Low Carbon API N80 Steel

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The simultaneous presence of CO2-saturated water with natural oil in the transmission pipeline system, often made from steel, is inevitable. Therefore, in the present study, three brine salinities (low salinity, medium salinity, and high salinity) and six different temperatures (35, 45, 55, 65, 75, 85 °C) in CO2-saturated brines containing NaCl, CaCl2, MgCl2, Na2SO4 and KCl were employed to study the individual and synergistic effects of brine salinity and temperature on CO2 corrosion of low carbon API N80 steel. According to Tafel polarization tests results, in the 35-65 °C temperature range, increasing the brine salinity resulted in a decrease in the corrosion rate; however, from 65 to 85 °C, by increasing the salinity from low to high, the corrosion rate increased. In all brine salinities, increasing the temperature resulted in the corrosion rate enhancement to a maximum value and then a decrease was observed. Electrochemical impedance spectroscopy and Tafel tests results agreed. Weight loss method was also performed to validate the electrochemical technique and the results confirmed the electrochemical data. According to the quantitative analysis (using the analysis of variance experimental design method), the synergistic action of salt concentration and temperature was higher than the individual action of them and among temperature and salt concentration, the most influential parameter was temperature. Furthermore, according to qualitative analysis results, which was used to predict the direction of variations, the synergistic effect of temperature and salt concentration in all 6 temperatures and both medium and high salt concentrations was accelerating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C.O. Paul, R.A. Shakoor, and A.M.A. Mohamed, Synergistic Erosion-Corrosion Behavior of API X120 Steel, Mater. Today Proc., 2020, 32, p 37–43. https://doi.org/10.1016/j.matpr.2020.05.513

    Article  CAS  Google Scholar 

  2. P.C. Okonkwo, S. Grami, S. Murugan, and S. Khan, Effect of Erosion on Corrosion of API X120 Steel in Relation to Erodent Particle Size, J. Iron Steel Res. Int., 2020, 27, p 691–701. https://doi.org/10.1007/s42243-019-00338-3

    Article  CAS  Google Scholar 

  3. A. Pasha, H.M. Ghasemi, and J. Neshati, Synergistic Erosion-Corrosion Behavior of X-65 Carbon Steel at Various Impingement Angles, J. Tribol., 2017 https://doi.org/10.1115/1.4033336

    Article  Google Scholar 

  4. P.A. Alaba, S.A. Adedigba, S.F. Olupinla, O. Agboola, and S.E. Sanni, Unveiling Corrosion Behavior of Pipeline Steels in CO2-Containing Oilfield Produced Water: Towards Combating the Corrosion Curse, Crit. Rev. Solid State Mater. Sci., 2020, 45, p 239–260. https://doi.org/10.1080/10408436.2019.1588706

    Article  CAS  Google Scholar 

  5. M.A. Islam and Z. Farhat, Erosion-Corrosion Mechanism and Comparison of Erosion-Corrosion Performance of API Steels, Wear, 2017, 376–377, p 533–541. https://doi.org/10.1016/j.wear.2016.12.058

    Article  CAS  Google Scholar 

  6. A.M.A. Mohamed and P. Okonkwo, Erosion Mechanisms of API X42 and AISI 1018 Steel Materials at Normal Impact Angle, Int. J. Eng. Sci. Innov. Technol., 2014, 3, p 50.

    Google Scholar 

  7. P.C. Okonkwo, M.H. Sliem, M. Hassan Sk, R. Abdul Shakoor, A. Amer Mohamed, A.M. Abdullah, and R. Kahraman, Erosion Behavior of API X120 Steel: Effect of Particle Speed and Impact Angle, Coatings, 2018, 8, p 343. https://doi.org/10.3390/coatings8100343

    Article  CAS  Google Scholar 

  8. L. Zeng, S. Shuang, X.P. Guo, and G.A. Zhang, Erosion-Corrosion of Stainless Steel at Different Locations of a 90° Elbow, Corros. Sci., 2016, 111, p 72–83. https://doi.org/10.1016/j.corsci.2016.05.004

    Article  CAS  Google Scholar 

  9. F.M. Sani, B. Brown, Z. Belarbi, and S. Nesic, An Experimental Investigation on the Effect of Salt Concentration on Uniform CO2 Corrosion, Corrosion, 2019. (2019) NACE-2019–13026.

  10. P. Okonkwo and A.M.A. Mohamed, Erosion-Corrosion in Oil And Gas Industry: A Review, Int. J. Metall. Mater. Sci. Eng., 2014, 4, p 7–28.

    Google Scholar 

  11. A.M.A. Mohamed, E. Ahmed, and P. Okonkwo, Effect of Temperature on the Corrosion Behavior of API X80 Steel Pipeline, Int. J. Electrochem. Sci., 2015, 10, p 10246–10260.

    Google Scholar 

  12. Ö.N. Cora, D. Acar, A. Budur, H. Sofuoglu, H. Gedikli, R. Gümrük, and D. Meriç, Experimental Investigations on Particle Erosion Behavior of AA 6061 Alloy, 9th Anakara International Aeropace Conference, Ankara, Turkey, 20–22 September 2017, p 1–10.

  13. S. Li, Z. Zeng, M.A. Harris, L.J. Sánchez, and H. Cong, CO2 Corrosion of Low Carbon Steel Under the Joint Effects of Time-Temperature-Salt Concentration, Front. Mater., 2019 https://doi.org/10.3389/fmats.2019.00010

    Article  Google Scholar 

  14. H. Bai, Y. Wang, Y. Ma, Q. Zhang, and N. Zhang, Effect of CO2 Partial Pressure on the Corrosion Behavior of J55 Carbon Steel in 30% Crude Oil/Brine Mixture, Materials (Basel), 2018, 11, p 1765. https://doi.org/10.3390/ma11091765

    Article  CAS  Google Scholar 

  15. I. Díaz, H. Cano, D. Crespo, B. Chico, D. de la Fuente, and M. Morcillo, Atmospheric Corrosion of ASTM A-242 and ASTM A-588 Weathering Steels in Different Types of Atmosphere, Corros. Eng. Sci. Technol., 2018, 53, p 449–459. https://doi.org/10.1080/1478422X.2018.1500978

    Article  Google Scholar 

  16. L. Yan, Y. Diao, Z. Lang, and K. Gao, Corrosion Rate Prediction and Influencing Factors Evaluation of Low-Alloy Steels in Marine Atmosphere Using Machine Learning Approach, Sci. Technol. Adv. Mater., 2020, 21, p 359–370. https://doi.org/10.1080/14686996.2020.1746196

    Article  CAS  Google Scholar 

  17. G.A. Gaber, L.Z. Mohamed, and M.M. Tash, Experimental Correlation Using ANOVA and DOE Studies on Corrosion Behavior of Fe and Ni-Based Alloy under Different Media, Mater. Res. Express, 2020, 7, p 036521. https://doi.org/10.1088/2053-1591/ab7e6d

    Article  CAS  Google Scholar 

  18. A. Kahyarian, B. Brown, S. Nesic, Mechanism of CO2 Corrosion of Mild Steel: A New Narrative, Corrosion 2018. (2018) NACE-2018–11232.

  19. A. Lazareva, J. Owen, S. Vargas, R. Barker, and A. Neville, Investigation of the Evolution of An Iron Carbonate Layer and its Effect on Localized Corrosion of X65 Carbon Steel in CO2 Corrosion Environments, Corros. Sci., 2021, 192, p 109849. https://doi.org/10.1016/j.corsci.2021.109849

    Article  CAS  Google Scholar 

  20. W. Liu, C. Bai, Q. Liu, and J. Yao, Study on the Effect of Temperature on The Gas–Liquid Mass Transfer Rate of Volatile Liquid, Eur. Phys. J. Plus, 2020, 135, p 437. https://doi.org/10.1140/epjp/s13360-020-00442-4

    Article  CAS  Google Scholar 

  21. G. Aristia, L.Q. Hoa, and R. Bäßler, Corrosion of Carbon Steel in Artificial Geothermal Brine: Influence of Carbon Dioxide at 70 °C and 150 °C, Materials (Basel), 2019, 12, p 3801. https://doi.org/10.3390/ma12223801

    Article  CAS  Google Scholar 

  22. B. Hoomehr, K. Raeissi, F. Ashrafizadeh, M. Kharaziha, and S. Labbaf, Corrosion Performance and Biological Properties of Electrophoretically Deposited Bioactive Glass-Zirconia Core-Shell Composite Coating on Ti6Al4V Substrate, Surf. Coat. Technol., 2022, 434, p 128209. https://doi.org/10.1016/j.surfcoat.2022.128209

    Article  CAS  Google Scholar 

  23. Z. Yan, L. Zhu, Y.C. Li, R.J. Wycisk, P.N. Pintauro, M.A. Hickner, and T.E. Mallouk, The Balance of Electric Field and Interfacial Catalysis in Promoting Water Dissociation in Bipolar Membranes, Energy Environ. Sci., 2018, 11, p 2235–2245. https://doi.org/10.1039/C8EE01192C

    Article  CAS  Google Scholar 

  24. J. Chen, X. Wang, H. Ma, Z. Huo, and Y. Wang, Experimental Investigation on Corrosion Behavior of X80 Pipeline Steel under Carbon Dioxide Aqueous Conditions, ACS Omega, 2022, 7, p 6142–6150. https://doi.org/10.1021/acsomega.1c06613

    Article  CAS  Google Scholar 

  25. S. Holm, T. Holm, and Ø.G. Martinsen, Simple Circuit Equivalents for the Constant Phase Element, PLoS ONE, 2021, 16, p e0248786. https://doi.org/10.1371/journal.pone.0248786

    Article  CAS  Google Scholar 

  26. A. Kahyarian, M. Achour, and S. Nesic, CO2 Corrosion of mild steel, in Trends in Oil and Gas Corrosion Research and Technologies (Elsevier, 2017), p 149–190. https://doi.org/10.1016/B978-0-08-101105-8.00007-3

  27. H. Mansoori, D. Young, B. Brown, and M. Singer, Influence of Calcium and Magnesium Ions on CO2 Corrosion of Carbon Steel in Oil and Gas Production Systems: A Review, J. Nat. Gas Sci. Eng., 2018, 59, p 287–296. https://doi.org/10.1016/j.jngse.2018.08.025

    Article  CAS  Google Scholar 

  28. L.M. Tavares, E.M. da Costa, J.J. de O Andrade, R. Hubler, and B. Huet, Effect of Calcium Carbonate on Low Carbon Steel Corrosion Behavior in Saline CO2 High Pressure Environments, Appl. Surf. Sci., 2015, 359(2015), p 143–152. https://doi.org/10.1016/j.apsusc.2015.10.075

    Article  CAS  Google Scholar 

  29. R. Rizzo, S. Gupta, M. Rogowska, and R. Ambat, Corrosion of Carbon Steel under CO2 Conditions: Effect of CaCO3 Precipitation on the Stability of the FeCO3 Protective Layer, Corros. Sci., 2020, 162, p 108214. https://doi.org/10.1016/j.corsci.2019.108214

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Hoomehr.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 67 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoomehr, B., Pakshir, M. & Rahsepar, M. Investigation of Individual and Synergistic Effects of Salinity and Temperature on CO2 Corrosion Performance of Low Carbon API N80 Steel. J. of Materi Eng and Perform 32, 4643–4654 (2023). https://doi.org/10.1007/s11665-022-07439-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07439-3

Keywords

Navigation