Skip to main content
Log in

Effect of Temperature on Hard TiB2-Al2O3-Ti Coatings Deposited Using Electron Beam Physical Vapor Deposition

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

High-speed steel surfaces were coated with TiB2-Al2O3-(Ti 20%) thin film coatings of 4.9796 and 3.9036 µm thickness, deposited using electron beam physical vapor deposition at 400 and 500 °C temperatures, respectively. Surface profilometer and 3D profilometer with AFM were used to analyze the coatings’ thickness and surface roughness of the samples. Nanotribometer tests were used to evaluate thin film coatings' wear and friction behavior at varied loads of 0.5, 1, 1.5, and 2 N. Nanoindentation, FESEM, EDS, Raman Spectroscopy, and XRD were used to characterize the thin films. According to the findings, the nano-mechanical and nano-tribological behavior of the coating alters at different temperatures. The coating deposition which was done at low temperature of 400 °C performed better than the coating deposited high temperature of 500 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. K. Bobzin, High-Performance Coatings for Cutting Tools, CIRP J. Manuf. Sci. Technol., 2017, 18, p 1–9.

    Article  Google Scholar 

  2. Y. Li, P. Zhang, P. Bai et al., Microstructure and Properties of Ti/TiBCN Coating on 7075 Aluminum Alloy by Laser Cladding, Surf. Coat. Technol., 2017, 334, p 142–149.

    Article  Google Scholar 

  3. H.G. Zhu, H.Z. Wang, D.S. Xiong et al., Interfacial Structure of Al3Ti, α-Al2O3 and TiB2/Al Composites Fabricated by, Exothermic Dispersion Reaction Method, Chin. J. Nonferrous Met., 2006, 16(4), p 586–591.

    CAS  Google Scholar 

  4. B. Du, S.R. Paital and N.B. Dahotre, Synthesis of TiB2–TiC/Fe Nano-Composite Coating by Laser Surface Engineering, Opt. Laser Technol., 2013, 45(1), p 647–653.

    Article  CAS  Google Scholar 

  5. P. Bagde, S.G. Sapate, R.K. Khatirkar et al., Friction and Abrasive Wear Behaviour of Al2O3-13TiO2 and Al2O3-13TiO2+Ni Graphite Coatings, Tribol. Int., 2018, 121, p 353–372.

    Article  CAS  Google Scholar 

  6. He. Hongjun, C. Hongzhi, X. Yanchun et al., Self-Propagating High-Temperature Synthesis of TiB2+Al2O3/NiAl Composites, Shandong Ceram., 2007, 30(6), p 3–6.

    Google Scholar 

  7. W.G. Fahrenholtz and G.E. Hilmas, Ultra-High Temperature Ceramics: Materials for Extreme Environments, Scr. Mater., 2017, 129, p 94–99.

    Article  CAS  Google Scholar 

  8. P.H. Mayrhofer, C. Mitterer, J.G. Wen, J.E. Greene and I. Petrov, Self-Organized Nanocolumnar Structure in Superhard TiB2 Thin Films, Appl. Phys. Lett., 2005, 86, p 131909.

    Article  Google Scholar 

  9. M. Berger, M. Larsson and S. Hogmark, Evaluation of Magnetron-Sputtered TiB2 Intended for Tribological Applications, Surf. Coat. Technol., 2000, 124, p 253–261.

    Article  CAS  Google Scholar 

  10. F. Lofaj, T. Moskalewicz, G. Cempura, M. Mikula, J. Dusza and A. Czyrska-Filemonowicz, Nanohardness and Tribological Properties of nc-TiB2 Coatings, J. Eur. Ceram. Soc., 2013, 33, p 2347–2353.

    Article  CAS  Google Scholar 

  11. M.N. Polyakov, M. Morstein, X. Maeder, T. Nelis, D. Lundin, J. Wehrs, J.P. Best, T.E.J. Edwards, M. Döbeli and J. Michler, Microstructure-Driven Strengthening of TiB2 Coatings Deposited by Pulsed Magnetron Sputtering, Surf. Coat. Technol., 2019, 368, p 88–96.

    Article  CAS  Google Scholar 

  12. S. Ramalingam and L. Zheng, Film-Substrate Interface Stresses and Their Role in the Tribological Performance of Surface Coatings, Tribol. Int., 1995, 28, p 145–161.

    Article  CAS  Google Scholar 

  13. P.H. Mayrhofer, Thermal Stability and Self-Arrangement of Nanocrystalline Hard Coatings, Springer, Dordrecht, 2004, p 57–68

    Google Scholar 

  14. S. Kumar and A.K. Das, Wear Resistance and Hardness Properties of TiB2– Fe Coating Developed on AISI 1020 Steel by Tungsten Inert Gas (TIG) Cladding, Ceram. Int., 2022, 48, p 30052–30065.

    Article  CAS  Google Scholar 

  15. R.G. Munro, Material Properties of Titanium Diboride, J. Res. Natl. Inst. Stand. Technol., 2000, 105, p 709.

    Article  CAS  Google Scholar 

  16. L. Wang, A.K. Tieu, S. Lu, S. Jamali, G. Hai, H.H. Nguyen and S. Cui, Sliding Wear Behavior and Electrochemical Properties of Binder Jet Additively Manufactured 316SS/Bronze Composites in Marine Environment, Tribol. Int., 2021, 156, p 106810.

    Article  CAS  Google Scholar 

  17. S.P. Neog, S.D. Bakshi and S. Das, Effect of Normal Loading on Microstructural Evolution and Sliding Wear Behaviour of Novel Continuously Cooled Carbide Free Bainitic Steel, Tribol. Int., 2021, 157, p 106846.

    Article  CAS  Google Scholar 

  18. S.K. Mishra, P.K.P. Rupa and L.C. Pathak, Surface and Nanoindentation Studies on Nanocrystalline Titanium Diboride Thin Film Deposited by Magnetron Sputtering, Thin Solid Films, 2007, 515, p 6884–6889.

    Article  CAS  Google Scholar 

  19. C.M.T. Sanchez, B.R. Plata, M.E.H.M. da Costa and F.L. Freire, Titanium Diboride Thin Films Produced by dc-Magnetron Sputtering: Structural and Mechanical Properties, Surf. Coat. Technol., 2011, 205, p 3698–3702.

    Article  CAS  Google Scholar 

  20. W. Dai, T. Zhang, J. Yang, R. Sun and J. Xu, Morphological Analysis of TiB2 Thin Film Prepared by rf Magnetron Sputtering, J. Vac. Sci. Technol., 2008, 26, p 610–615.

    Article  CAS  Google Scholar 

  21. R. Psiuk, M. Milczarek, P. Jenczyk, P. Denis, D.M. Jarząbek, P. Bazarnik, M. Pisarek and T. Mościcki, Improved Mechanical Properties of W-Zr-B Coatings Deposited by Hybrid RF Magnetron—PLD Method, Appl. Surf. Sci., 2021, 570, p 151239.

    Article  CAS  Google Scholar 

  22. B. Bakhit, I. Petrov, J.E. Greene, L. Hultman, J. Rosén and G. Greczynski, Controlling the B/Ti ratio of TiBx Thin Films Grown by High-Power Impulse Magnetron Sputtering, J. Vac. Sci. Technol., 2018, 36, p 030604.

    Article  Google Scholar 

  23. J. Thörnberg, J. Palisaitis, N. Hellgren, F.F. Klimashin, N. Ghafoor, I. Zhirkov, C. Azina, J.-L. Battaglia, A. Kusiak, M.A. Sortica, J.E. Greene, L. Hultman, I. Petrov, P.O.Å. Persson and J. Rosen, Microstructure and Materials Properties of Understoichiometric TiBx Thin Films Grown by HiPIMS, Surf. Coat. Technol., 2020, 404, p 126537.

    Article  Google Scholar 

  24. J. Palisaitis, M. Dahlqvist, A.J. Hall, J. Thörnberg, I. Persson, N. Nedfors, L. Hultman, J.E. Greene, I. Petrov, J. Rosen and P.O. Persson, Where is the Unpaired Transition Metal in Substoichiometric Diboride Line Compounds?, Acta Mater., 2020, 204, p 116510.

    Article  Google Scholar 

  25. N. Nedfors, A. Mockute, J. Palisaitis, P.O.Å. Persson, L.-Å. Näslund and J. Rosen, Influence of Pulse Frequency and Bias on Microstructure and Mechanical Properties of TiB2 Coatings Deposited by High Power Impulse Magnetron Sputtering, Surf. Coat. Technol., 2016, 304, p 203–210.

    Article  CAS  Google Scholar 

  26. J. Thörnberg, B. Bakhit, J. Palisaitis, N. Hellgren, L. Hultman, G. Greczynski, P.O.Å. Persson, I. Petrov and J. Rosen, Improved Oxidation Properties from a Reduced B Content in Sputter-Deposited TiBx Thin Films, Surf. Coat. Technol., 2021, 420, p 127353.

    Article  Google Scholar 

  27. D.E. Wolfe, J. Singh and K. Narasimhan, Synthesis and Characterization of Multilayered TiC/TiB2 Coatings Deposited by Ion Beam Assisted, Electron Beam–Physical Vapor Deposition (EB–PVD), Surf. Coat. Technol., 2003, 165(1), p 8–25.

    Article  CAS  Google Scholar 

  28. X.G. Lei, H.C. Wu, X.H. Liu and Z.Z. Yao, Effect of Obliquely Deposited on Microstructure and Texture Evolution in TBCs Fabricated by EB-PVD process, Rare Met. Mater. Eng., 2011, 40, p 211–214.

    Google Scholar 

  29. N.R. Kadam, G. Karthikeyan and D.M. Kulkarni, Effect of Substrate Rotation on the Microstructure of 8YSZ Thermal Barrier Coatings by EB-PVD, Mater. Today Proc., 2020, 28, p 678–683.

    Article  CAS  Google Scholar 

  30. K. Wada, N. Yamaguchi and H. Matsubara, Effect of Substrate Rotation on Texture Evolution in ZrO2–4 mol.% Y2O3 Layers Fabricated by EB-PVD, Surf. Coat. Technol., 2005, 191, p 367–374.

    Article  CAS  Google Scholar 

  31. M. Matsumoto, K. Wada, N. Yamaguchi, T. Kato and H. Matsubara, Effects of Substrate Rotation Speed during Deposition on the Thermal Cycle Life of Thermal Barrier Coatings Fabricated by Electron Beam Physical Vapor Deposition, Surf. Coat. Technol., 2008, 202, p 3507–3512.

    Article  CAS  Google Scholar 

  32. U. Schulz, S.G. Terry and C.G. Levi, Microstructure and Texture of EB-PVD TBCs Grown under Different Rotation Modes, Mater. Sci. Eng. A, 2003, 360, p 319–329.

    Article  Google Scholar 

  33. S.A. Jesuraj, P. Kuppusami, T. Dharini, P. Panda and D. Devapal, Effect of Substrate Temperature on Microstructure and Nanomechanical Properties of Gd2Zr2O7 Coatings Prepared by EB-PVD Technique, Ceram. Int., 2018, 44, p 18164–18172.

    Article  CAS  Google Scholar 

  34. A.A. Mohammed, Z.T. Khodair and A.A. Khadom, Preparation and Investigation of the Structural Properties of α-Al2O3 Nanoparticles using the Sol-Gel Method, Chem. Data Collect., 2020, 29, p 100531.

    Article  CAS  Google Scholar 

  35. V. Edlmayr, M. Moser, C. Walter and C. Mitterer, Thermal Stability of Sputtered Al2O3 Coatings, Surf. Coat. Technol., 2010, 204(9–10), p 1576–1581.

    Article  CAS  Google Scholar 

  36. M. Masanta, S.M. Shariff and A.R. Choudhary, A Comparative Study of the Tribological Performances of Laser Clad TiB2-TiC- Al2O3 Composite Coatings on AISI 1020 and AISI 304 Substrates, Wear, 2011, 271(7–8), p 1124–1133.

    Article  CAS  Google Scholar 

  37. X. Huang, Z. Zhao, L. Zhang, C. Yin and J. Wu, Microstructure Modification and Fracture Behavior of Solidified TiC–TiB2 Ceramic Prepared by Combustion Synthesis in Ultra-High Gravity Field, J. Asian Ceram. Soc., 2014, 2, p 144–149.

    Article  Google Scholar 

  38. Ð. Vesna, D.N. Sredojević, J. Dostanić, D. Lončarević, S.P. Ahrenkiel, N. Švrakić, E. Brothers, M. Belić and J.M. Nedeljković, Visible Light Absorption of Surface-Modified Al2O3 Powders: A Comparative DFT and Experimental, Microporous Mesoporous Mater., 2019, 273, p 41–49.

    Article  Google Scholar 

  39. S. Sivasankaran, K. Sivaprasad, R. Narayanasamy and P.V. Satyanarayana, X-ray Peak Broadening Analysis of AA 6061100–x−xwt.% Al2O3 Nanocomposite Prepared by Mechanical Alloying, Mater. Charact., 2011, 62(7), p 661–672.

    Article  CAS  Google Scholar 

  40. R. Syamsai, J.R. Rodriguez, V.G. Pol et al., Double Transition Metal MXene (TixTa4xC3) 2D Materials as Anodes for Li-ion Batteries, Sci. Rep., 2021, 11, p 688.

    Article  CAS  Google Scholar 

  41. Y.M. Mos, A.C. Vermeulen, C.J.N. Buisman and J. Weijma, X-Ray Diffraction of Iron Containing Samples: The Importance of a Suitable Configuration, Geomicrobiol. J., 2018, 35(6), p 511–517.

    Article  CAS  Google Scholar 

  42. Ľ Bača and N. Stelzer, Adapting of Sol–Gel Process for Preparation of TiB2 Powder from Low-Cost Precursors, J. Eur. Ceram. Soc., 2008, 28(5), p 907–911.

    Article  Google Scholar 

  43. X.-L. Qiu, X.-H. Gao, T.-H. Zhou, B.-H. Chen, Lu. Jia-Zheng, H.-X. Guo, X.-T. Li and G. Liu, Structure, Thermal Stability and Chromaticity Investigation of TiB2 based High Temperature Solar Selective Absorbing Coatings, Sol. Energy, 2019, 181, p 88–94.

    Article  CAS  Google Scholar 

  44. A. Rochet, B. Baubet, V. Moizan, C. Pichon and V. Briois, Co-K and Mo-K edges Quick-XAS Study of the Sulphidation Properties of Mo/Al2O3 and CoMo/Al2O3 Catalysts, C. R. Chim., 2016, 19(10), p 1337–1351.

    Article  CAS  Google Scholar 

  45. T. Dash, T.K. Rout, B.B. Palei et al., Synthesis of α-Al2O3–Graphene Composite: A Novel Product to Provide Multi-Functionalities on Steel Strip Surface, SN Appl. Sci., 2020, 2, p 1147.

    Article  CAS  Google Scholar 

  46. S. Banday and M.F. Wàňi, Nanomechanical and Nanotribological Characterization of Multilayer Self-Lubricating Ti/MoS2/Si/MoS2 Nanocoating on Aluminium-Silicon Substrate, Surf. Interface Anal., 2019, 51(6), p 649–660.

    Article  CAS  Google Scholar 

  47. R. Machaka, T.E. Derry, I. Sigalas and M. Herrmann, Analysis of the Indentation Size Effect in the Microhardness Measurements in B6O, J. Adv. Mater. Sci. Eng., 2011, 569252, p 1–6.

    Google Scholar 

  48. B.K. Jang, Influence of Low Indentation Load on Young’s Modulus and Hardness of 4 mol.% Y2O3–ZrO2 by Nanoindentation, J Alloys Compd., 2006, 426(1–2), p 312–315.

    Article  CAS  Google Scholar 

  49. E. Meyer, Investigations of Hardness Testing and Hardness, Phys. Z, 1908, 9, p 66.

    CAS  Google Scholar 

  50. N. Panich and Y. Sun, Mechanical Properties of TiB2-Based Nanostructured Coatings, Surf. Coat. Technol., 2005, 198(1–3), p 14–19.

    Article  CAS  Google Scholar 

  51. N. Panich and Y. Sun, Mechanical Characterization of Nanostructured TiB2 Coatings using Microscratch Techniques, Tribol. Int., 2006, 39(2), p 138–145.

    Article  CAS  Google Scholar 

  52. W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7(6), p 1564–1583.

    Article  CAS  Google Scholar 

  53. D.C. Jana, G. Sundarajan and K. Chattopadhyay, Effect of Porosity on Structure, Young’s Modulus, and Thermal Conductivity of SiC Foams by Direct Foaming and Gelcasting, J. Am. Ceram. Soc., 2016, 14544, p 1–9.

    Google Scholar 

Download references

Acknowledgments

The authors are highly thankful to Dr. LC Pathak, Chief Scientist, CSIR, NML Jamshedpur, for allowing us to conduct the experiments in his laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajaz Ali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A., Ahmad, S.N. Effect of Temperature on Hard TiB2-Al2O3-Ti Coatings Deposited Using Electron Beam Physical Vapor Deposition. J. of Materi Eng and Perform 32, 4604–4625 (2023). https://doi.org/10.1007/s11665-022-07414-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07414-y

Keywords

Navigation