Skip to main content
Log in

Stabilization and Mechanical Properties of Mg-3Ca and Mg-3Ca/SiC/5p Foams Alloyed with Beryllium

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present paper investigates the stabilization of Mg-3Ca alloy and Mg-3Ca/SiC/5p composite foams with and without the addition of 0.12 wt.% beryllium. In Mg-3Ca alloy foam, Be addition has shown a significant improvement in the expansion and pore structure. Whereas, in case of Mg-3Ca/SiC/5p composite foams, the SiC particles stabilized the foam effectively, while Be addition does not show any distinguishable improvement in the foam structure. The formation of BeO and the dense coverage of SiC particles in the gas–solid interface of Mg-3Ca and Mg-3Ca/SiC/5p composite foams, respectively, are the reasons for the foam stabilization. Mg-3Ca/SiC/5p composite foam exhibited lowest foam density of 0.10 g/cm3. The quasi-static compression test shows that Mg-3Ca-0.12Be/SiC/5p composite foam containing Be exhibited lower foam density and higher normalized compressive strength. The energy absorption capacity per unit foam density in Be containing foams was also higher.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D.H. Yang, C. Seo and B.Y. Hur, Mg Alloy Foam Fabrication Via Melt Foaming Method, J. Mater. Sci. Technol., 2008, 24, p 302.

    CAS  Google Scholar 

  2. D.H. Yang, B.Y. Hur and S.R. Yang, Study on Fabrication and Foaming Mechanism of Mg Foam Using CaCO3 as Blowing Agent, J. Alloys Compd., 2008, 46, p 221.

    Article  Google Scholar 

  3. X. Xia, J. Feng, J. Ding, K. Song, X. Chen, W. Zhao and B.Y. Hur, Fabrication and Characterization of Closed-Cell Magnesium-Based Composite Foams, Mater. Des., 2015, 74, p 36.

    Article  CAS  Google Scholar 

  4. X.C. Xia, X.W. Chen, Z. Zhang, X. Chen, W.M. Zhao, B. Liao and B.Y. Hur, Effects of Porosity and Pore Size on the Compressive Properties of Closed-Cell Mg Alloy Foam, J. Magnes. Alloy., 2013, 1, p 330.

    Article  CAS  Google Scholar 

  5. M. Sakamoto, S. Akiyama and K. Ogi, Suppression of Ignition and Burning of Molten Mg Alloys by Ca Bearing Stable Oxide Film, J. Mater. Sci. Lett., 1997, 16, p 1048.

    Article  CAS  Google Scholar 

  6. X.Q. Zeng, Q.D. Wang, Y.Z. Lu, W.J. Ding, C. Lu, Y.P. Zhu, C.Q. Zhai and X.P. Xu, Kinetic Study on the Surface Oxidation of the Molten Mg-9Al-0.5Zn-0.3Be Alloy, J. Mater. Sci., 2001, 36, p 2499.

    Article  CAS  Google Scholar 

  7. T.R. Neu, M. Mukherjee, F. Garcia-Moreno and J. Banhart, International conference on porous metal and metallic foams. B.Y. Hur, B.K. Kim, S.E. Kim, S.K. Hyun Ed., GS Intervision, Seoul, 2012, p 139

    Google Scholar 

  8. T.S. Shih, J.H. Wang and K.Z. Chong, Combustion of Magnesium Alloys in Air, Mater. Chem. Phys., 2004, 85, p 302.

    Article  CAS  Google Scholar 

  9. Y.B. Huang, I.S. Chung, B.S. You, W.W. Park and B.H. Choi, Effect of Be Addition on the Oxidation Behavior of Mg-Ca Alloys At Elevated Temperature, Met. Mater. Int., 2004, 10, p 7.

    Article  CAS  Google Scholar 

  10. S.H. Ha, J.K. Lee and S.K. Kim, Effect of CaO on Oxidation Resistance and Microstructure of Pure Mg, Mater. Trans., 2008, 49, p 1081.

    Article  CAS  Google Scholar 

  11. S. Akiyama, Flame-resistant magnesium alloys by calcium, J. Jpn. Foundry Eng. Soc., 1994, 66, p 38.

    CAS  Google Scholar 

  12. T.S. Shih, J.B. Liu and P.S. Wei, Oxide Films on Magnesium and Magnesium Alloys, Mater. Chem. Phys., 2007, 104, p 497.

    Article  CAS  Google Scholar 

  13. Q. Tan, N. Mo, B. Jiang, F. Pan, A. Atrens and M.X. Zhang, Oxidation Resistance of Mg-9Al-1Zn Alloys Micro-Alloyed with Be, Scr. Mater., 2016, 115, p 28.

    Article  Google Scholar 

  14. D.H. Yang, Y. Shang-Run, W. Hui, M. Ai-Bin, J. Jing-Hua, C. Jian-Qing and W. Ding-Lie, Compressive Properties of Cellular Mg Foams Fabricated by Melt-Foaming Method, Mater. Sci. Eng. A, 2010, 525, p 5405.

    Article  Google Scholar 

  15. S.H. Park, K.H. Song, Y.S. Um and B.Y. Hur, Rheological Characteristics of Mg-Al Alloys with Ceramic Particles for Metal Foam, Mater. Sci. Forum, 2006, 510, p 742.

    Article  Google Scholar 

  16. D. Bhosale, A. Devikar, S. Sasikumar and G.S. Vinod Kumar, Foaming Mg Alloy and Composite Using MgCO3 blowing agent, Metall. Mater. Trans. B, 2021, 52, p 931.

    Article  CAS  Google Scholar 

  17. T. Miyoshi, M. Itoh, S. Akiyama and A. Kitahara, ALPORAS Aluminum Foam: Production Process, Properties and Applications, Adv. Eng. Mater., 2000, 2, p 179.

    Article  CAS  Google Scholar 

  18. V. Gergely, D.C. Curran and T.W. Clyne, The FOAMCARP Process: Foaming of Aluminium MMCs by the Chalk-Aluminium Reaction in Precursors, Compos. Sci. Technol., 2003, 63, p 2301.

    Article  CAS  Google Scholar 

  19. J.D. Bryant, M. Crowley, W. Wang, D. Wilhelmy and J. Kallivayalil, International conference on porous metals and metallic foams. L.P. Lefebvre, J. Banhart, D. Dunand Ed., DEStech Publication, Pennsylvania, 2008, p 19

    Google Scholar 

  20. M.F. Ashby, A.G. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson and H.N.G. Wadley, Metal foams: a design guide, Butterworth-Heinemann, Burlington, 2000, p 40

    Google Scholar 

  21. M. Mukherjee, F. Garcia-Moreno and J. Banhart, Collapse of Aluminum Foam in Two Different Atmospheres, Metall. Mater. Trans. B, 2010, 41, p 500.

    Article  Google Scholar 

  22. K. Heim, G.S. Vinod-Kumar, F. García-Moreno, A. Rack and J. Banhart, Stabilisation of Aluminium Foams and Films by the Joint Sction of Dispersed Particles and Oxide Films, Acta Mater., 2015, 99, p 313.

    Article  CAS  Google Scholar 

  23. M. Mukherjee, U. Ramamurty, F. Garcia-Moreno and J. Banhart, The Effect of Cooling Rate on the Structure and Properties of Closed-Cell Aluminium Foams, Acta Mater., 2010, 58, p 5031.

    Article  CAS  Google Scholar 

  24. I.J.T. Jensen, A. Thogersen, O.M. Lovvik, H. Schreuders, B. Dam and S. Diplas, X-ray Photoelectron Spectroscopy Investigation of Magnetron Sputtered Mg-Ti-H thin films, Int. J. Hydrogen Energy, 2013, 38, p 10704.

    Article  CAS  Google Scholar 

  25. A. Marin, C.P. Lungu and C. Porosnicu, Influence of Gaseous Environments on Beryllium–Tungsten and Tungsten Surfaces Investigated by XPS, J. Vac. Sci. Technol., 2017, 35, e021403.

    Google Scholar 

  26. B. Luo, J. Zhang, Y. He, L. Chen, J. Luo, K. Li and W. Wu, An Investigation Progress Toward Be-Based Ablator Materials for the Inertial Confinement Fusion, High Power Laser Sci. Eng., 2017, 5, p 1.

    Article  Google Scholar 

  27. Z.G. Xu, J.W. Fu, T.J. Luo and Y.S. Yang, Effects of Cell Size on Quasi-Static Compressive Properties of Mg Alloy Foams, Mater. Des., 2012, 34, p 40.

    Article  Google Scholar 

  28. E.Y. Shafirovich and U.I. Goldshleger, Combustion of Magnesium Particles in CO2/CO mixtures, Combust Sci Technol, 1992, 84, p 33–43.

    Article  CAS  Google Scholar 

  29. S. Wang, Y. Wang, Q. Ramasse and Z. Fan, The Nature of Native MgO in Mg and its Alloys, Metall. Mater. Trans. A, 2020, 51, p 2957.

    Article  CAS  Google Scholar 

  30. R.D. Heidenbreich, Electron Reflections in MgO Crystals with the Electron Microscope, Phys. Rev., 1942, 62, p 291.

    Article  Google Scholar 

  31. G.S. Vinod Kumar, F. García-Moreno, J. Banhart and A. Kennedy, The Stabilising Effect of Oxides in Foamed Aluminium Alloy Scrap, Int. J. Mater. Res., 2005, 106(9), p 978.

    Article  Google Scholar 

  32. J. Campbell, Castings, Butterworth-Heinemann, Oxford, 2003, p 17

    Book  Google Scholar 

  33. K.B. Wikle, Improving aluminum castings with beryllium, AFS Trans., 1978, 78, p 513.

    Google Scholar 

  34. X. Zeng, Q. Wang, Y. Lü, W. Ding, Y. Zhu, C. Zhai, C. Lu and X. Xu, Behavior of Surface Oxidation on Molten Mg-9Al-0.5Zn-0.3Be Alloy, Mater. Sci. Eng. A, 2001, 301, p 154.

    Article  Google Scholar 

  35. A. Haibel, A. Rack and J. Banhart, Why are metal foams stable?, Appl. Phys. Lett., 2006, 89, p 2004.

    Article  Google Scholar 

  36. G.S. Vinod Kumar, B.S. Murty and M. Chakraborty, Settling Behaviour of TiAl3, TiB2, TiC and AlB2 Particles in Liquid Al During Grain Refinement, Int. J. Cast Met. Res., 2010, 23(4), p 193.

    Article  Google Scholar 

  37. N. Babcsan, G.S. Vinod Kumar, B.S. Murty and J. Banhart, Grain Refiners as Liquid Metal Foam Stabilisers, Trans. Indian Inst. Met., 2007, 60(2–3), p 127.

    CAS  Google Scholar 

  38. C. Koerner, Integral foam molding of metals. In: Integral foam molding of light metals, (Springer, Berlin, Heidelberg 2008) p. 27.

  39. K. Stobener, J. Baumeister and G. Rausch, New Concept for Series Manufacturing: Aluminium Foam in Industrial Production, ATZ Worldw., 2005, 107, p 2.

    Article  Google Scholar 

  40. D. Yang, Z. Hu, W. Chen, J. Lua, J. Chen, H. Wang, L. Wang, J. Jiang and A. Ma, Fabrication of Mg-Al Alloy Foam with Close-Cell Structure by Powder Metallurgy Approach and its Mechanical Properties, J. Manuf. Process., 2016, 22, p 290.

    Article  Google Scholar 

  41. X. Lu, Z. Zhang, H. Du, H. Luo, Y. Mu and J. Xu, Compressive Behavior of Mg Alloy Foams at Elevated Temperature, J. Alloys Compd., 2019, 797, p 727.

    Article  CAS  Google Scholar 

  42. X. Xia, W. Zhao, Z. Wei and Z. Wang, Effects of Specimen Aspect Ratio on the Compressive Properties of Mg Alloy Foam, Mater. Des., 2012, 42, p 32.

    Article  CAS  Google Scholar 

  43. G. Lu, H. Hao, F. Wang and X. Zhang, Preparation of Closed-Cell Mg Foams Using SiO2-Coated CaCO3 as Blowing Agent in Atmosphere, Trans. Nonferrous Met. Soc. China, 2013, 23, p 1832.

    Article  CAS  Google Scholar 

  44. L. Lefebvre and E. Baril, Effect of Oxygen Concentration and Distribution on the Compression Properties on Titanium Foams, Adv. Eng. Mater., 2008, 10(9), p 868.

    Article  CAS  Google Scholar 

  45. S. Yu, Y. Luo and J. Liu, Effects of Strain Rate and SiC Particle on the Compressive Property of SiCp/AlSi9Mg Composite Foams, Mater. Sci. Eng. A, 2008, 487, p 394.

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank DST-SERB, Government of India, for funding of the work under EMR grant no. EMR/2016/006207. The first author also thanks Mr. D. Bhosale, Mr. S. Sasikumar, and Dr. K. Georgy for their support in experimental work and characterization. The third author acknowledges the funding received from the Ministry of Human Resource and Development for the Centre of Excellence (CoE) in Applied Magnesium Research (A Vertical of Centre for Materials and Manufacturing for Futuristic Mobility), IIT Madras (grant number SB20210992MEMHRD008517).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Vinod Kumar.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special topical focus in the Journal of Materials Engineering and Performance on Magnesium. The issue was organized by Prof. C. (Ravi) Ravindran, Dr. Raja Roy, Mr. Payam Emadi, and Mr. Bernoulli Andilab, Ryerson University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devikar, A., Muduli, B., Mukherjee, M. et al. Stabilization and Mechanical Properties of Mg-3Ca and Mg-3Ca/SiC/5p Foams Alloyed with Beryllium. J. of Materi Eng and Perform 32, 2700–2709 (2023). https://doi.org/10.1007/s11665-022-07369-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07369-0

Keywords

Navigation