Skip to main content

Advertisement

Log in

Development of Ultralight Binary Mg-Li Alloys: Enhancing Damping, Ductility, and Ultimate Compressive Strength beyond 2000 MPa

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, we design ultralow density Mg−8.4Li (~ 1.46 g/cc), and Mg-9Li (~ 1.44 g/cc) alloys processed by Disintegrated Melt Deposition (DMD) having extraordinary properties outperforming the existing commercial magnesium (Mg) alloys in terms of specific strength, strain hardening ability and ductility. The developed alloys were characterized for microstructural, microhardness, compressive and damping properties. Unique image threshold technique coupled with SEM and EDS was used for better visualization of the phases and layers formed on the surface of Mg-Li binary alloys. The high reactivity of lithium (Li) with Mg resulted in evaporation and oxidation of alloying elements, thereby effectively reducing the wt.% of Li added to ~ 8.4 and 9 wt.% than the original amount of 15 and 20 wt.%, respectively. Microstructural analysis revealed presence of both α-Mg and β-Li solid solution phases in both Mg-8.4Li and Mg-9Li alloys. The materials presented impressive compressive and energy absorption properties, exhibiting > 80% fracture strain for both alloys, with Mg-8.4Li exhibiting the highest compressive yield strength (CYS) value of 192 MPa and Mg-9Li exhibiting the highest ultimate compressive strength (UCS) value of 2312 MPa. The overall damping properties were also enhanced for the binary Mg-Li alloys and showed the highest specific value as compared with other popular commercial magnesium, aluminum, titanium or ferrous alloys. Finally, microstructural changes in Mg owing to alloying with Li and its effect on the mechanical and damping properties are elaborately discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G. Parande, V. Manakari, S. Prasadh, D. Chauhan, S. Rahate, R. Wong and M. Gupta, Strength Retention, Corrosion Control and Biocompatibility of Mg–Zn–Si/HA Nanocomposites, J. Mech. Behav. Biomed. Mater., 2020, 103, 103584.

    Article  CAS  Google Scholar 

  2. M. Gupta, G. Parande, V. Manakari. An insight into high performance magnesium alloy/nano-metastable-syntactic composites. In: 17th Australian International Aerospace Congress: AIAC 2017. Engineers Australia, Royal Aeronautical Society, 2017 p 270

  3. J. Thornby, D. Verma, R. Cochrane, A. Westwood, V. Manakari, M. Gupta and M. Haghshenas, Indentation-Based Characterization Of Creep And Hardness Behavior Of Magnesium Carbon Nanotube Nanocomposites at Room Temperature, SN Appl. Sci., 2019, 1(7), p 1–12.

    Article  CAS  Google Scholar 

  4. R.-Z. Wu, Y.-D. Yan, G.-X. Wang, L. Murr, W. Han, Z.-W. Zhang and M.-L. Zhang, Recent Progress in Magnesium–lithium Alloys, Int. Mater. Rev., 2015, 60(2), p 65–100.

    Article  CAS  Google Scholar 

  5. G. Wei, Y. Mahmoodkhani, X. Peng, A. Hadadzadeh, T. Xu, J. Liu, W. Xie and M.A. Wells, Microstructure Evolution and Simulation Study of a Duplex Mg–Li Alloy during Double Change Channel Angular Pressing, Mater. Des., 2016, 90, p 266–275.

    Article  CAS  Google Scholar 

  6. W. Xu, N. Birbilis, G. Sha, Y. Wang, J.E. Daniels, Y. Xiao and M. Ferry, A High-Specific-Strength and Corrosion-resistant Magnesium Alloy, Nat. Mater., 2015, 14(12), p 1229–1235.

    Article  CAS  Google Scholar 

  7. H. Fu, B. Ge, Y. Xin, R. Wu, C. Fernandez, J. Huang and Q. Peng, Achieving High Strength and Ductility in Magnesium Alloys Via Densely Hierarchical double Contraction Nanotwins, Nano Lett., 2017, 17(10), p 6117–6124.

    Article  CAS  Google Scholar 

  8. Y. Liu, Y. Wu, D. Bian, S. Gao, S. Leeflang, H. Guo, Y. Zheng and J. Zhou, Study on the Mg-Li-Zn Ternary Alloy System With Improved Mechanical Properties, Good Degradation Performance and Different Responses to Cells, Acta Biomater., 2017, 62, p 418–433.

    Article  CAS  Google Scholar 

  9. T. Al-Samman, Comparative Study of the Deformation behavior of Hexagonal Magnesium–lithium Alloys and a Conventional Magnesium AZ31 Alloy, Acta Mater., 2009, 57(7), p 2229–2242.

    Article  CAS  Google Scholar 

  10. H. Dong, F. Pan, B. Jiang and Y. Zeng, Evolution of Microstructure and Mechanical Properties of a Duplex Mg–Li Alloy Under Extrusion with an Increasing Ratio, Mater. Des., 2014, 57, p 121–127.

    Article  CAS  Google Scholar 

  11. Q. Xiang, B. Jiang, Y. Zhang, X. Chen, J. Song, J. Xu, L. Fang and F. Pan, Effect of Rolling-induced Microstructure on Corrosion behaviour of an as-Extruded Mg-5Li-1Al Alloy Sheet, Corros. Sci., 2017, 119, p 14–22.

    Article  CAS  Google Scholar 

  12. Y. Zou, L. Zhang, H. Wang, X. Tong, M. Zhang and Z. Zhang, Texture Evolution and their Effects on the Mechanical Properties of Duplex Mg–Li Alloy, J. Alloy. Compd., 2016, 669, p 72–78.

    Article  CAS  Google Scholar 

  13. F. Cao, H. Ding, Y. Li, G. Zhou and J. Cui, Superplasticity, Dynamic Grain Growth and Deformation Mechanism in Ultra-light Two-Phase Magnesium–lithium Alloys, Mater. Sci. Eng., A, 2010, 527(9), p 2335–2341.

    Article  Google Scholar 

  14. C. Li, D. Xu, X.-B. Chen, B. Wang, R. Wu, E. Han and N. Birbilis, Composition and Microstructure Dependent Corrosion behaviour of Mg-Li Alloys, Elect. Acta, 2018, 260, p 55–64.

    Article  CAS  Google Scholar 

  15. C.O. Muga and Z.W. Zhang, Strengthening Mechanisms of Magnesium-lithium based Alloys and Composites, Adv. Mater. Sci. Eng., 2016 https://doi.org/10.1155/2016/1078187

    Article  Google Scholar 

  16. Y.-H. Sun, R.-C. Wang, C.-Q. Peng, F. Yan and Y. Ming, Corrosion behavior and Surface Treatment of Superlight Mg–Li Alloys, Trans. Nonf. Metals Soc. China, 2017, 27(7), p 1455–1475.

    Article  CAS  Google Scholar 

  17. L. Gong, J. Zhang, T. Yin, J. Wei and G. Wu, A New Method for Melting Mg-Li Alloys, Magnesium Technology 2014eds, Springer, London, 2014, p 219–224

    Google Scholar 

  18. T.-C. Chang, J.-Y. Wang, C.-L. Chu and S. Lee, Mechanical Properties and Microstructures of Various Mg–Li Alloys, Mater. Lett., 2006, 60(27), p 3272–3276.

    Article  CAS  Google Scholar 

  19. S. Prasadh, V. Ratheesh, V. Manakari, G. Parande, M. Gupta and R. Wong, The Potential of Magnesium Based Materials in Mandibular Reconstruction, Metals, 2019, 9(3), p 302.

    Article  CAS  Google Scholar 

  20. M.S. Kujur, V. Manakari, G. Parande, S. Prasadh, R. Wong, A. Mallick and M. Gupta, Development of Rare-earth Oxide Reinforced Magnesium Nanocomposites for Orthopaedic Applications: A Mechanical/Immersion/Biocompatibility Perspective, J. Mech. Behav. Biomed. Mater., 2021, 114, 104162.

    Article  CAS  Google Scholar 

  21. R.-C. Zeng, L. Sun, Y.-F. Zheng, H.-Z. Cui and E.-H. Han, Corrosion and Characterisation of Dual Phase Mg–Li–Ca Alloy in Hank’s Solution: The Influence of Microstructural Features, Corros. Sci., 2014, 79, p 69–82.

    Article  CAS  Google Scholar 

  22. M. Khorami, S. Hesaraki, A. Behnamghader, H. Nazarian and S. Shahrabi, In Vitro Bioactivity and Biocompatibility of Lithium Substituted 45S5 Bioglass, Mater. Sci. Eng., C, 2011, 31(7), p 1584–1592.

    Article  CAS  Google Scholar 

  23. X.-B. Chen, C. Li and D. Xu, Biodegradation of Mg-14Li Alloy in Simulated Body Fluid: A Proof-of-Concept Study, Bioactive materials, 2018, 3(1), p 110–117.

    Article  Google Scholar 

  24. F.W. Bach, M. Schaper and C. Jaschik, Influence of lithium on hcp magnesium alloys, Materials Science Forum, Trans Tech Publications Ltd., Zurich-Uetikon, Switzerland, 2003, p 1037–1042

    Google Scholar 

  25. Y. Song, D. Shan, R. Chen and E.-H. Han, Corrosion Characterization of Mg–8Li Alloy in NaCl Solution, Corros. Sci., 2009, 51(5), p 1087–1094.

    Article  CAS  Google Scholar 

  26. G. Liu, W. Xie, G. Wei, Y. Yang, J. Liu, T. Xu, W. Xie and X. Peng, Dynamic Recrystallization Behavior and Corrosion Resistance of a Dual-phase Mg-Li Alloy, Materials, 2018, 11(3), p 408.

    Article  Google Scholar 

  27. Ruihong Li, Bin Jiang, Zhijun Chen, Fusheng Pan and Zhanyong Gao, Microstructure and Mechanical Properties of Mg 14Li 1Al 0.3La Alloys Produced by Two-pass Extrusion, J. Rare Earths, 2017, 35(12), p 1268–1272. https://doi.org/10.1016/j.jre.2017.08.001

    Article  CAS  Google Scholar 

  28. B. Jiang, Y. Zeng, H. Yin, R. Li and F. Pan, Effect of Sr on Microstructure and Aging Behavior of Mg–14Li Alloys, Prog. Natl. Sci.: Mater. Int., 2012, 22(2), p 160–168.

    Article  Google Scholar 

  29. Shun Zhang, Wu. Ruizhi, Feng Zhong, Xiaochun Ma, Xiang Wang and Wu. Qiang, Ultra-high Strength Mg-Li Alloy with B2 Particles and Spinodal Decomposition Zones, Fundam. Res., 2022 https://doi.org/10.1016/j.fmre.2022.01.023

    Article  Google Scholar 

  30. Taylor W. Cain and Joseph P. Labukas, The Development of β Phase Mg–Li Alloys for Ultralight Corrosion Resistant Applications, npj Mater. Degradat., 2020 https://doi.org/10.1038/s41529-020-0121-2

    Article  Google Scholar 

  31. M. Gupta and W. Wong, Magnesium-based Nanocomposites: Lightweight Materials of the Future, Mater. Charact., 2015, 105, p 30–46.

    Article  CAS  Google Scholar 

  32. G. Parande, V. Manakari, G.K. Meenashisundaram and M. Gupta, Enhancing the Hardness/Compression/Damping Response of Magnesium by Reinforcing with Biocompatible Silica Nanoparticulates, Int. J. Mater. Res., 2016, 107(12), p 1091–1099.

    Article  CAS  Google Scholar 

  33. M.S. Kujur, A. Mallick, V. Manakari, G. Parande, K.S. Tun and M. Gupta, Significantly Enhancing the Ignition/Compression/Damping Response of Monolithic Magnesium by Addition of Sm2O3 Nanoparticles, Metals, 2017, 7(9), p 357.

    Article  Google Scholar 

  34. V. Manakari, G. Parande and M. Gupta, Selective Laser Melting of Magnesium and Magnesium Alloy Powders: a Review, Metals, 2017, 7(1), p 2.

    Article  Google Scholar 

  35. N. Akhtar, W. Akhtar and S. Wu, Melting and Casting of Lithium Containing Aluminium Alloys, Int. J. Cast Met. Res., 2015, 28(1), p 1–8.

    Article  CAS  Google Scholar 

  36. W. Lei, D. Zhu, H. Wang and W. Liang, Microstructure and Mechanical Properties of Pure Magnesium Subjected to Hot Extrusion, J. Wuhan Univ. Technol. Mater. Sci. Ed., 2019, 34(5), p 1193–1196.

    Article  CAS  Google Scholar 

  37. M. Król, Solidification Characteristics of Mg-Li-Al Alloys, Solid State Phenomena, Trans Tech Publ, 2018, 98, p 41–52.

    Google Scholar 

  38. M. Król, M. Staszuk, T. Mikuszewski and D. Kuc, Refinement Effect of RE in Light Weight Mg–Li–Al Alloys, J. Therm. Anal. Calorim., 2018, 134(1), p 333–341.

    Article  Google Scholar 

  39. D. Xu, T. Zu, M. Yin, Y. Xu and E. Han, Mechanical Properties of the Icosahedral Phase Reinforced Duplex Mg–Li Alloy both at Room and Elevated Temperatures, J. Alloy. Compd., 2014, 582, p 161–166.

    Article  CAS  Google Scholar 

  40. Y. Zeng, B. Jiang, M. Zhang, H. Yin, R. Li and F. Pan, Effect of Mg24Y5 Intermetallic Particles on Grain Refinement of Mg-9Li Alloy, Intermetallics, 2014, 45, p 18–23.

    Article  CAS  Google Scholar 

  41. V. Manakari, G. Parande, M. Doddamani, G. Kumar and M.G. Meenashisundaram, Enhancing Significantly the Damping Response of Mg Using Hollow Glass Microspheres while Simultaneously Reducing Weight, AML, 2017, 201, p 1171–1177.

    Article  Google Scholar 

  42. V. Manakari, G. Parande, M. Doddamani and M. Gupta, Enhancing the Ignition, Hardness and Compressive Response of Magnesium by Reinforcing with Hollow Glass Microballoons, Materials, 2017, 10(9), p 997.

    Article  Google Scholar 

  43. G. Parande, V. Manakari, H. Gupta and M. Gupta, Magnesium-β-tricalcium Phosphate Composites as a Potential Orthopedic Implant: A Mechanical/Damping/Immersion Perspective, Metals, 2018, 8(5), p 343.

    Article  Google Scholar 

  44. G. Wang, D. Song, C. Li, E.E. Klu, Y. Qiao, J. Sun, J. Jiang and A. Ma, Developing Improved Mechanical Property and Corrosion Resistance of Mg-9Li Alloy via Solid-Solution Treatment, Metals, 2019, 9(9), p 920.

    Article  CAS  Google Scholar 

  45. J. Zhao, J. Fu, B. Jiang, A. Tang, H. Sheng, T. Yang, G. Huang, D. Zhang and F. Pan, Influence of Li Addition on the Microstructures and Mechanical Properties of Mg–Li Alloys, Metals and Materials International, 2019, 7, p 1–13.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Singapore Ministry of Education Academic Research Funding. The grant number is WBS# R-265-000-684-114.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special topical focus in the Journal of Materials Engineering and Performance on Magnesium. The issue was organized by Prof. C. (Ravi) Ravindran, Dr. Raja Roy, Mr. Payam Emadi, and Mr. Bernoulli Andilab, Ryerson University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S.K., Manakari, V., Parande, G. et al. Development of Ultralight Binary Mg-Li Alloys: Enhancing Damping, Ductility, and Ultimate Compressive Strength beyond 2000 MPa. J. of Materi Eng and Perform 32, 2723–2734 (2023). https://doi.org/10.1007/s11665-022-07335-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07335-w

Keywords

Navigation