Skip to main content

Advertisement

Log in

Transformation Behavior of a Shape Memory Ni50.7Ti49.3 (at.%) Alloy during Partial Thermal Cycling

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present work explores the phase transition characteristics of a shape memory alloy (SMA), Ni50.7Ti49.3 (at.%), studied under three different types of partial thermal cycling, namely MM + A (Type I), A ⇌ A + M (Type II) and M + A ⇌ M + A (Type III), based on the temperature range and the phases involved during the phase transformation. The partial thermal cycling tests were conducted using a differential scanning calorimeter (DSC) by varying the maximum and minimum temperatures of a cycle, while the presence of phases at different temperatures was confirmed by XRD analysis. It is observed that Type I partial cycling suppresses the appearance of the intermediate R phase during thermal cycling. Also, during Type II and Type III partial cycling, the phase changes take place in two steps, i.e., R phase to B2 (first stage) and B19’ to B2 (second stage). The area under the transformation curve corresponding to the first stage enlarges with increasing cycles, while that corresponding to the second stage decreases with them. All this is because of the change in the volume fraction of the alloy taking part during the phase changes and the generation of dislocation during thermal cycling. Partial cycling results in a higher stability of phase transition temperatures as compared to that for full cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The raw data that support the findings of this study are available in one of the author's research gate profiles (controlled access repository). https://www.researchgate.net/publication/359392939_Raw_data_for_Partial_Cycling_of_NiTi_SMA.

References

  1. K. Otsuka and X. Ren, Physical Metallurgy of Ti-Ni-Based Shape Memory Alloys, Prog. Mater. Sci., 2005, 50(5), p 511–678. https://doi.org/10.1016/j.pmatsci.2004.10.001

    Article  CAS  Google Scholar 

  2. D.E. Hodgson, W.H. Ming and R.J. Biermann, Shape Memory Alloys, ASM Int. Met. Handb. Tenth Ed., 1990, 2, p 897–902.

    Google Scholar 

  3. B. Li, L. Wang, B. Wang, D. Li, J.P. Oliveira, R. Cui, J. Yu, L. Luo, R. Chen, Y. Su, J. Guo and H. Fu, Tuning the Microstructure, Martensitic Transformation and Superelastic Properties of EBF3-Fabricated NiTi Shape Memory Alloy Using Interlayer Remelting, Mater. Des., 2022, 220, p 110886. https://doi.org/10.1016/j.matdes.2022.110886

    Article  CAS  Google Scholar 

  4. B. Li, L. Wang, B. Wang, D. Li, J.P. Oliveira, R. Cui, J. Yu, L. Luo, R. Chen, Y. Su, J. Guo and H. Fu, Electron Beam Freeform Fabrication of NiTi Shape Memory Alloys: Crystallography, Martensitic Transformation, and Functional Response, Mater. Sci. Eng. A, 2022, 843, p 143135. https://doi.org/10.1016/j.msea.2022.143135

    Article  CAS  Google Scholar 

  5. K. Otsuka, A. Saxena, J. Deng and X. Ren, Mechanism of the Shape Memory Effect in Martensitic Alloys: An Assessment, Philos. Mag., 2011, 91(36), p 4514–4535.

    Article  CAS  Google Scholar 

  6. Z.K. Lu and G.J. Weng, Martensitic Transformation and Stress-Strain Relations of Shape-Memory Alloys, J. Mech. Phys. Solid, 1997, 45(11–12), p 1905–1921.

    Article  CAS  Google Scholar 

  7. J. Mohd-Jani, M. Leary, A. Subic and M.A. Gibson, A Review of Shape Memory Alloy Research, Applications and Opportunities, Mater. Des., 2014, 56, p 1078–1113. https://doi.org/10.1016/j.matdes.2013.11.084

    Article  CAS  Google Scholar 

  8. L. Petrini and F. Migliavacca, Biomedical Applications of Shape Memory Alloys, J. Metall., 2011, 2011, p 1–15.

    Article  Google Scholar 

  9. C. Menna, F. Auricchio, and D. Asprone Applications of Shape Memory Alloys in Structural Engineering. In: Shape Memory Alloy Engineering: For Aerospace, Structural and Biomedical Applications. Elsevier, (2015). https://doi.org/10.1016/B978-0-08-099920-3.00013-9.

  10. A.R. Pelton, V. Schroeder, M.R. Mitchell, X.Y. Gong, M. Barney and S.W. Robertson, Fatigue and Durability of Nitinol Stents, J. Mech. Behav. Biomed. Mater., 2008, 1(2), p 153–164.

    Article  CAS  Google Scholar 

  11. D.C. Lagoudas, D.A. Miller, L. Rong and P.K. Kumar, Thermomechanical Fatigue of Shape Memory Alloys, Smart Mater. Struct., 2009, 18(8), p 1–12.

    Article  Google Scholar 

  12. G. Eggeler, E. Hornbogen, A. Yawny, A. Heckmann and M. Wagner, Structural and Functional Fatigue of NiTi Shape Memory Alloys, Mater. Sci. Eng. A, 2004, 378(1–2), p 24–33.

    Article  Google Scholar 

  13. S.K. Bhaumik, C.N. Saikrishna, K.V. Ramaiah and M.A. Venkataswamy, Understanding the Fatigue Behaviour of NiTiCu Shape Memory Alloy Wire Thermal Actuators, Key Eng. Mater., 2008, 378, p 301–316.

    Article  Google Scholar 

  14. J.P. Oliveira, R.M. Miranda, N. Schell and F.M.B. Fernandes, High Strain and Long Duration Cycling Behavior of Laser Welded NiTi Sheets, Int. J. Fatigue, 2016, 83, p 195–200. https://doi.org/10.1016/j.ijfatigue.2015.10.013

    Article  CAS  Google Scholar 

  15. S. Miyazaki, Y. Igo and K. Otsuka, Effect of Thermal Cycling on the Transformation Temperatures of TiNi Alloys, Acta Metall., 1986, 34(10), p 2045–2051.

    Article  CAS  Google Scholar 

  16. S. Yang, T. Omori, C. Wang, Y. Liu, M. Nagasako, J. Ruan, R. Kainuma, K. Ishida and X. Liu, A Jumping Shape Memory Alloy under Heat, Sci. Rep., 2015, 2016(6), p 2–7. https://doi.org/10.1038/srep21754

    Article  CAS  Google Scholar 

  17. M. Prasher, D. Sen, R. Tewari and M. Krishnan, Tuning the Thermal Cyclic Stability of Martensitic Transformation in Ni50.3Ti29.7Hf20 High Temperature Shape Memory Alloy, Mater. Res. Bull., 2021, 133, p 111056.

    Article  CAS  Google Scholar 

  18. J. Perkins and P. Bobowiec, Microstructural Effects of Martensitic Transformation Cycling of a Cu-Zn-Al Alloy: Vestigial Structures in the Parent Phase, Metall. Trans. A Phys. Metall. Mater. Sci., 1986, 17(2), p 195–203.

    Article  Google Scholar 

  19. J. Zhang, C. Somsen, T. Simon, X. Ding, S. Hou, S. Ren, X. Ren, G. Eggeler, K. Otsuka and J. Sun, Leaf-like Dislocation Substructures and the Decrease of Martensitic Start Temperatures: A New Explanation for Functional Fatigue during Thermally Induced Martensitic Transformations in Coarse-Grained Ni-Rich Ti-Ni Shape Memory Alloys, Acta Mater., 2012, 60(5), p 1999–2006. https://doi.org/10.1016/j.actamat.2011.12.014

    Article  CAS  Google Scholar 

  20. R.F. Hamilton, H. Sehitoglu, Y. Chumlyakov and H.J. Maier, Stress Dependence of the Hysteresis in Single Crystal NiTi Alloys, Acta Mater., 2004, 52(11), p 3383–3402.

    Article  CAS  Google Scholar 

  21. C. Urbina, S. De la Flor and F. Ferrando, Effect of Thermal Cycling on the Thermomechanical Behaviour of NiTi Shape Memory Alloys, Mater. Sci. Eng. A, 2009, 501(1–2), p 197–206.

    Article  Google Scholar 

  22. T. Liu, Y. Zheng and L. Cui, Influence of Partial Cycling on the Transformation Mass of NiTi Alloys, Mater. Lett., 2013, 112, p 121–123. https://doi.org/10.1016/j.matlet.2013.09.012

    Article  CAS  Google Scholar 

  23. J. Rodriguez-Aseguinolaza, I. Ruiz-Larrea, M.L. No, A. Lopez-Echarri and J. San-Juan, The Influence of Partial Cycling on the Martensitic Transformation Kinetics in Shape Memory Alloys, Intermetallics, 2009, 17(9), p 749–752.

    Article  CAS  Google Scholar 

  24. W. Tang and R. Sandström, Analysis of the Influence of Cycling on TiNi Shape Memory Alloy Properties, Mater. Des., 1993, 14(2), p 103–113.

    Article  CAS  Google Scholar 

  25. G. Airoldi, A. Corsi and G. Riva, The Hysteresis Cycle Modification in Thermoelastic Martensitic Transformation of Shape Memory Alloys, Scr. Mater., 1997, 36(11), p 1273–1278.

    Article  CAS  Google Scholar 

  26. G. Airoldi, S. Besseghini and G. Riva, Electric Transport Properties Modified by Incomplete Cycling on Heating (ICH) in TiNi Based Alloys, J. Phys., 1995, 5(2), p C2-483-C2-488.

    Google Scholar 

  27. Z. Wang, X. Zu and Y. Fu, Review on the Temperature Memory Effect in Shape Memory Alloys, Int. J. Smart Nano Mater., 2011, 2(3), p 101–119.

    Article  CAS  Google Scholar 

  28. A.A. Karakalas, T.T. Machairas, and D.A. Saravanos, Exploration of the Partial Transformation Behaviour of Shape Memory Alloys and Its Effect on Actuation Performance. In: Behavior and Mechanics of Multifunctional Materials XIII, (2019), p. 109680D.

  29. J.K. Strelec, D.C. Lagoudas, M.A. Khan and J. Yen, Design and Implementation of a Shape Memory Alloy Actuated Reconfigurable Airfoil, J. Intell. Mater. Syst. Struct., 2003, 14(4–5), p 257–273.

    Article  Google Scholar 

  30. H.M. Paranjape, M.L. Bowers, M.J. Mills and P.M. Anderson, Mechanisms for Phase Transformation Induced Slip in Shape Memory Alloy Micro-Crystals, Acta Mater., 2017, 132, p 444–454. https://doi.org/10.1016/j.actamat.2017.04.066

    Article  CAS  Google Scholar 

  31. T. Simon, A. Kröger, C. Somsen, A. Dlouhy and G. Eggeler, On the Multiplication of Dislocations during Martensitic Transformations in NiTi Shape Memory Alloys, Acta Mater., 2010, 58(5), p 1850–1860.

    Article  CAS  Google Scholar 

  32. A.R. Pelton, G.H. Huang, P. Moine and R. Sinclair, Effects of Thermal Cycling on Microstructure and Properties in Nitinol, Mater. Sci. Eng. A, 2012, 532, p 130–138. https://doi.org/10.1016/j.msea.2011.10.073

    Article  CAS  Google Scholar 

  33. G.B. Stachowiak and P.G. McCormick, Shape Memory Behaviour Associated with the R and Martensitic Transformations in a NiTi Alloy, Acta Metall., 1988, 36(2), p 291–297.

    Article  CAS  Google Scholar 

  34. Y. Zheng, F. Jiang, L. Li, H. Yang and Y. Liu, Effect of Ageing Treatment on the Transformation Behaviour of Ti-50.9 at.% Ni Alloy, Acta Mater., 2008, 56(4), p 736–745.

    Article  CAS  Google Scholar 

  35. J. Uchil, K.G. Kumara and K.K. Mahesh, Effect of Thermal Cycling on R-Phase Stability in a NiTi Shape Memory Alloy, Mater. Sci. Eng. A, 2002, 332(1–2), p 25–28.

    Article  Google Scholar 

  36. Y. Liu, J. Laeng, T.V. Chin and T.H. Nam, Partial Thermal Cycling of NiTi, J. Alloys Compd., 2008, 449(1–2), p 144–147.

    Article  CAS  Google Scholar 

  37. M. Krishnan, New Observations on the Thermal Arrest Memory Effect in Ni-Ti Alloys, Scr. Mater., 2005, 53(7), p 875–879.

    Article  CAS  Google Scholar 

  38. Z.G. Wang, X.T. Zu, Y.Q. Fu and L.M. Wang, Temperature Memory Effect in TiNi-Based Shape Memory Alloys, Thermochim. Acta, 2005, 428(1–2), p 199–205.

    Article  CAS  Google Scholar 

  39. L.D.A. Santos, P.D. Resende, M.G.D.A. Bahia and V.T.L. Buono, Effects of R-Phase on Mechanical Responses of a Nickel-Titanium Endodontic Instrument: Structural Characterization and Finite Element Analysis, Sci. World J., 2016, 2016, p 1–11.

    Article  CAS  Google Scholar 

  40. X. Wang, J. Van Humbeeck, B. Verlinden and S. Kustov, Thermal Cycling Induced Room Temperature Aging Effect in Ni-Rich NiTi Shape Memory Alloy, Scr. Mater., 2016, 113, p 206–208. https://doi.org/10.1016/j.scriptamat.2015.11.007

    Article  CAS  Google Scholar 

  41. Z. Zhang, R.D. James and S. Müller, Energy Barriers and Hysteresis in Martensitic Phase Transformations, Acta Mater., 2009, 57(15), p 4332–4352.

    Article  CAS  Google Scholar 

  42. J. Khalil-Allafi, A. Dlouhy and G. Eggeler, Ni4Ti3-Precipitation during Aging of NiTi Shape Memory Alloys and Its Influence on Martensitic Phase Transformations, Acta Mater., 2002, 50(17), p 4255–4274.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the Science and Engineering Research Board, Department of Science and Technology, India, under grant number CRG/2019/002267. The authors would also like to acknowledge the International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI—Hyderabad) for allowing us to conduct the high-temperature XRD tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sampath Vedamanickam.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganesan, S., Vedamanickam, S. Transformation Behavior of a Shape Memory Ni50.7Ti49.3 (at.%) Alloy during Partial Thermal Cycling. J. of Materi Eng and Perform 32, 2501–2508 (2023). https://doi.org/10.1007/s11665-022-07284-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07284-4

Keywords

Navigation