Skip to main content

Advertisement

Log in

Effect of Heat Treatment on the Microstructure and Mechanical Properties of Mg-6Zn-1Al-0.3Mn Magnesium Alloy

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The microstructure and mechanical properties of Mg-6Zn-1Al-0.3Mn under different heat treatments were investigated. The results show that the two-stage solution treatment is obviously better than single-stage solution treatment, and all the MgZn phases nearly dissolve into the matrix after 335 °C × 4 h + 385 °C × 8 h solution treatment. Both the solution treatment and the aging time have an important effect on the number and size of rod-shaped β`1 during the aging treatment. In a word, after the 335 °C × 4 h + 385 °C × 8 h + 175 °C × 8 h heat treatment, the β`1 phase uniformly distributes in the matrix with the highest number density and a length of 50 nm, and the alloy exhibits the best mechanical properties—the tensile strength and the yield strength reach to 279.2 ± 1.1, 170.8 ± 3.1 MPa, respectively, and the elongation is 15.3 ± 0.7%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.F. Nie, Precipitation and Hardening in Magnesium Alloys, Metall. Mater. Trans. A, 2012, 43A, p 3891–3939.

    Article  Google Scholar 

  2. S. You, Y. Huang, K.U. Kainer, and N. Hort, Recent Research and Developments on Wrought Magnesium Alloys, J. Magnes. Alloys, 2017, 5, p 239–253.

    Article  CAS  Google Scholar 

  3. B.R. Powell, P.E. Krajewski, and A.A. Luo, Magnesium alloys for lightweight powertrains and automotive structures, Materials, Design and Manufacturing for Lightweight Vehicles (Second Edition). Woodhead Publishing in Materials, Oxford, 2021, p 125–186

    Chapter  Google Scholar 

  4. J. Zhang, Z.X. Guo, F.S. Pan, Z.S. Li, and X.D. Luo, Effect of Composition on the Microstructure and Mechanical Properties of Mg-Zn-Al Alloys, Mater. Sci. Eng. A, 2007, 456, p 43–51.

    Article  Google Scholar 

  5. M.O. Pekguleryuz and A.A. Kaya, Creep Resistant Magnesium Alloys for Powertrain Applications, Adv. Eng. Mater., 2003, 5, p 866–878.

    Article  CAS  Google Scholar 

  6. Z.H. Chen, H.G. Yan, J.H. Chen, Y.J. Quan, H.M. Wang, and D. Chen, Magnesium alloy, Chemical Industry Press, Beijing, 2004, p 28–32

    Google Scholar 

  7. Z. Zhang, A. Couture, and A. Luo, An Investigation of the Properties of Mg-Zn-Al Alloys, Scripta Mater., 1998, 39, p 45–53.

    Article  CAS  Google Scholar 

  8. Y.X. Wang, S.K. Guan, X.Q. Zeng, and W.J. Ding, Effects of RE on the Microstructure and Mechanical Properties of Mg–8Zn–4Al Magnesium Alloy, Mater. Sci. Eng. A, 2006, 416, p 109–118.

    Article  Google Scholar 

  9. X.F. Wan, Y.S. Sun, F. Xue, J. Bai, and W.J. Tao, Effect of Sr and Ca on the Microstructure and Properties of Mg-12Zn-4Al-0.3Mn Alloy, Mater. Sci. Eng. A, 2009, 508, p 50–58.

    Article  Google Scholar 

  10. N. Balasubramani, U.T.S. Pillai, and B.C. Pai, Optimization of Heat Treatment Parameters in ZA84 Magnesium Alloy, J. Alloy. Compd., 2008, 457, p 118–123.

    Article  CAS  Google Scholar 

  11. J. Wang, R.D. Liu, T.J. Luo, and Y.S. Yang, A High Strength and Ductility Mg-Zn-Al-Cu-Mn Magnesium Alloy, Mater. Des., 2013, 47, p 746–749.

    Article  CAS  Google Scholar 

  12. S.Z. Zhu, T.J. Luo, T.A. Zhang, Y.T. Liu, and Y.S. Yang, Effects of extrusion and heat treatments on microstructure and mechanical properties of Mg-8Zn-1Al-0.5Cu-0.5Mn alloy, Trans. Nonferrous Met. Soc. China, 2017, 27, p 73–81.

    Article  CAS  Google Scholar 

  13. S.Z. Zhu, T.J. Luo, and Y.S. Yang, Improving Mechanical Properties of Age-Hardenable Mg-6Zn-4Al-1Sn Alloy Processed by Double-Aging Treatment, J. Mater. Sci. Technol., 2017, 33, p 1249–1254.

    Article  CAS  Google Scholar 

  14. L. Bourgeois, B.C. Muddle, and J.F. Nie, The crystal structure of the equilibrium ϕ phase in Mg-Zn-Al casting alloys, Acta Mater., 2001, 49, p 2701–2711.

    Article  CAS  Google Scholar 

  15. S.R. Li and S.C. Zhou, Metal Heat Treatment, Central South University Press, Changsha, 2003, p 28–30

    Google Scholar 

  16. X. Gao and J.F. Nie, Characterization of Strengthening Precipitate Phases in a Mg-Zn Alloy, Scripta Mater., 2007, 56, p 645–648.

    Article  CAS  Google Scholar 

  17. Y.P. Ren, S.N. Sun, L.Q. Wang, Y. Guo, H.X. Li, S. Li, and G.W. Qin, Isothermal Section of Mg-rich Corner in Mg0-Zn-Al Ternary System at °C, Trans. Nonferrous Metal Soc. China, 2014, 24, p 3405–3412.

    Article  CAS  Google Scholar 

  18. Y.H. Zheng, B. Laure, and J.F. Nie, Aperiodic Structures of Rod-Shaped Precipitates in a Mg-Zn-Al Alloy, Scripta Mater., 2021, 205, p 114189.

    Article  CAS  Google Scholar 

  19. S. Alok, H. Takanobu, O. Machiko, T. Hiroyuki, T. Karel, S. Hidetoshi, and H. Toru, Precipitation of Stable Icosahedral Quasicrystal Phase in A Mg-Zn-Al Alloy, Acta Mater., 2022, 225, p 117563.

    Article  Google Scholar 

  20. K. Oh-ishi, K. Hono, and K.S. Shin, Effect of Pre-Aging and Al Addition on Age-Hardening and Microstructure in Mg-6 wt% Zn Alloys, Mater. Sci. Eng. A, 2008, 496, p 425–433.

    Article  Google Scholar 

  21. J.W. Yuan, T. Li, X.G. Li, K. Zhang, Y.H. Hao, and G.Q. Luo, Homogenizing Heat Treatment and Diffusion Kinetics of Mg-xZn-1Mn Magnesium Alloy, Chin. J. Rare Metals, 2012, 36, p 373–379.

    CAS  Google Scholar 

  22. J.F. Zou, L.F. Ma, W.T. Jia, Q.C. Le, G.W. Qin, and Y. Yuan, Microstructural and Mechanical Response of ZK60 Magnesium Alloy Subjected to Radial Forging, J. Mater. Sci. Technol., 2021, 83, p 228–238.

    Article  CAS  Google Scholar 

  23. Z.H. Chen, W.J. Xia, H.G. Yan, L.X. Li, Y.Q. Cheng, Q. Guo, and D. Chen, Wrought Magnesium Alloy, Chemical Industry Press, Beijing, 2005, p 51–55

    Google Scholar 

  24. Y.J. Wang, L.P. Zhong, Y.C. Dou, and Z.Y. Huang, Enhanced Age Hardening Response and Precipitation Evolution of Elastic Stress Aged Mg-Zn Alloys, J. Alloy. Compd., 2021, 860, p 158513.

    Article  CAS  Google Scholar 

  25. J.F. Nie, Effects of Precipitate Shape and Orientation on Dispersion Strengthening in Magnesium Alloys, Scripta Mater., 2003, 48, p 1009–1015.

    Article  CAS  Google Scholar 

  26. B. Langelier, G. Sha, A. Korinek, P. Donnadieu, S.P. Ringer, and S. Esmaeili, The Effects of Microalloying on the Precipitate Microstructure at Grain Boundary Regions in an Mg-Zn-Based Alloy, Mater. Des., 2017, 119, p 290–296.

    Article  CAS  Google Scholar 

  27. G.X. Hu, X. Cai, and Y.H. Rong, Fundamental of Material Science, Shanghai Jiao Tong University Press, Shanghai, 2006, p 187–189

    Google Scholar 

  28. J.M. Rosaliea, H. Somekawaa, A. Singha and T. Mukaib, The Effect of Size and Distribution of Rod-Shaped β1 Precipitates on the Strength and Ductility of a Mg-Zn Alloy, Mater. Sci. Eng. A, 2012, 539, p 230–237.

    Article  Google Scholar 

  29. Z.Z. Shi, H.T. Chen, K. Zhang, F.Z. Dai, and X.F. Liu, Crystallography of Precipitates in Mg Alloys, J. Magnes. Alloys, 2021, 9, p 416–431.

    Article  CAS  Google Scholar 

  30. Y.P. Ren, B.S. Liu, H.B. Xie, H.X. Li, M. Jiang, and G.W. Qin, Characterization of Precipitates in Aged Mg-4 wt%Zn Alloy, Mater. Today Commun., 2021, 21, p 102017.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2021YFB3701102), the Key research and development plan of Shandong province (No.2019JZZY020329), the National Key Research and Development Program of China (No.2016YFB0301105), Natural Science Foundation of Liaoning Province (No.2020-MS-013) and DongGuan Innovative Research Team Program (2020607134012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tianjiao Luo or Yuansheng Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special topical focus in the Journal of Materials Engineering and Performance on Magnesium. The issue was organized by Prof. C. (Ravi) Ravindran, Dr. Raja Roy, Mr. Payam Emadi, and Mr. Bernoulli Andilab, Ryerson University.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, T., Liu, C., Feng, J. et al. Effect of Heat Treatment on the Microstructure and Mechanical Properties of Mg-6Zn-1Al-0.3Mn Magnesium Alloy. J. of Materi Eng and Perform 32, 2561–2568 (2023). https://doi.org/10.1007/s11665-022-07230-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07230-4

Keywords

Navigation