Skip to main content

Corrosion Resistance of Interstitial Free Steel and Mg Alloys Sheets Joined by Mechanical Clinching

Abstract

The corrosion resistance of mechanically clinched interstitial free (IF) steel–Mg joints was investigated by potentiodynamic and immersion corrosion tests in 3.5% NaCl solution at 25 C. The initial microstructure influenced the corrosion performance of studied joints due to the formation of secondary phases and their volume fraction changed the galvanic corrosion response of Mg materials. Nd-La addition enhanced the corrosion resistance of IF-Mg joints, where two times higher corrosion resistance was obtained by IF-AZ31B-0.5Nd-0.1La (1110 mils/year (mpy)) joint than IF-AZ31B (3670 mpy). The cross section locations had different secondary phase (SP) volume fraction, SP-distribution and grain orientations which altered the corrosion behavior of joined materials. After the clinching process, the deformed section of IF-AZ31B-0.5Nd-0.1La and IF-AZ31B showed lower corrosion rate than undeformed sections 1040 and 1110 mpy and 2820 and 3670 mpy, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. M.M. Eshtayeh, M. Hrairi and A.K.M. Mohiuddin, Clinching Process for Joining Dissimilar Materials: State of the Art, The International Journal of Advanced Manufacturing Technology 2015 82:1, Springer, 2015, 82(1), p 179–195. https://doi.org/10.1007/S00170-015-7363-0

    Article  Google Scholar 

  2. S. Han, Y. Wu, Y. Gao, Q.Z.-2nd I.C. on, and undefined 2012, Study on Clinching of Magnesium Alloy Sheets with Different Lower Die Parameters Based on DEFORM 2D, atlantis-press.com, n.d., https://www.atlantis-press.com/proceedings/emeit-12/3492. Accessed 14 July 2022.

  3. R. Neugebauer, S. Dietrich and C. Kraus, Dieless Clinching and Dieless Rivet-Clinching of Magnesium, Key. Eng. Mater. Trans Tech Pub. Ltd, 2007, 344, p 693–698. https://doi.org/10.4028/www.scıentıfıc.net/kem.344.693

    Article  Google Scholar 

  4. K. Hono, C.L. Mendis, T.T. Sasaki and K. Oh-Ishi, Towards the Development of Heat-Treatable High-Strength Wrought Mg Alloys, Scripta. Mater. Pergam, 2010, 63(7), p 710–715.

    CAS  Article  Google Scholar 

  5. F. Guo, D. Zhang, X. Yang, L. Jiang, S. Chai and F. Pan, Effect of Rolling Speed on Microstructure and Mechanical Properties of AZ31 Mg Alloys Rolled with a Wide Thickness Reduction Range, Mater. Sci. Eng. A, Elsevier Ltd, 2014, 619, p 66–72.

    CAS  Article  Google Scholar 

  6. S.M. Ashrafizadeh, R. Mahmudi and A.R. Geranmayeh, A Comparative Study on the Effects of Gd, Y and La Rare-Earth Elements on the Microstructure and Creep Behavior of AZ81 Mg Alloy, Mater. Sci. Eng.: A, Elsevier, 2020, 790, 139712.

    CAS  Article  Google Scholar 

  7. A. Prasad, J. Jain and N.N. Gosvami, Effect of Minor La Addition on Wear Behaviour of Mg-10Dy Alloy, Wear, Elsevier, 2021, 486–487, 204121.

    Article  Google Scholar 

  8. K.I. Mori, N. Bay, L. Fratini, F. Micari and A.E. Tekkaya, Joining by Plastic Deformation, CIRP Ann. Manuf. Technol., 2013, 62(2), p 673–694.

    Article  Google Scholar 

  9. R.N. Ae, R. Mauermann, A.E. Stephan, D. Ae and C. Kraus, A New Technology for the Joining by Forming of Magnesium Alloys, Production Engineering 2007 1:1, Springer, 2007, 1(1), p 65–70. https://doi.org/10.1007/S11740-007-0045-5

    Article  Google Scholar 

  10. M.S. Gogheri, M. Kasiri-Asgarani, H.R. Bakhsheshi-Rad, H. Ghayour and M. Rafiei, In Vitro Corrosion Behavior and Cytotoxicity of Polycaprolactone – Akermanite-Coated Friction-Welded Commercially Pure Ti/AZ31 for Orthopedic Applications, J. Mater. Eng. Perform. Springer, 2020, 29(9), p 6053–6065.

    CAS  Article  Google Scholar 

  11. H.R. Bakhsheshi-Rad, E. Hamzah, S. Farahany and Mark P. Staiger, The Mechanical Properties and Corrosion Behavior of Quaternary Mg-6Zn-0.8Mn-XCa Alloys, J. Mater. Eng. Perform, 2015, 24(2), p 598–608. https://doi.org/10.1007/s11665-014-1271-6

    CAS  Article  Google Scholar 

  12. H.R. Bakhsheshi-Rad, E. Hamzah, H.Y. Tok, M. Kasiri-Asgarani, S. Jabbarzare and M. Medraj, Microstructure in Vitro Corrosion Behavior and Cytotoxicity of Biodegradable Mg-Ca-Zn and Mg-Ca-Zn-Bi Alloys, J. Mater. Eng. Perfor. Springer, 2017, 26(2), p 653–666.

    CAS  Article  Google Scholar 

  13. M.S. Gogherı, M. Kasırı-Asgaranı, H.R. Bakhsheshı-Rad, H. Ghayour and M. Rafıeı, Mechanical Properties, Corrosion Behavior and Biocompatibility of Orthopedic Pure Titanium−Magnesium Alloy Screw Prepared by Friction Welding, Transact. Nonferr. Metal. Soc. China, 2020, 30(11), p 2952–2966.

    Article  Google Scholar 

  14. S. Demirdal and F. Aydın, The Influence of Low-Cost Eggshell on the Wear and Electrochemical Corrosion Behaviour of Novel Pure mg Matrix Composites, Mater. Chem. Phys. Elsevier, 2022, 277, 125520.

    CAS  Article  Google Scholar 

  15. Z. Yu, M. Hu, A. Tang, M. Wu, J. He, Z. Gao, F. Wang, C. Li, B. Chen and J. Liu, Effect of Aluminium on the Microstructure and Mechanical Properties of as-Cast Magnesium-Manganese Alloys, Taylor and Francis, 2017, 33(17), p 2086–2096. https://doi.org/10.1080/02670836.2017.1345824

    CAS  Article  Google Scholar 

  16. B. Liu, Z. Wu, Y. Zhang and S. Zhang, Simultaneously Enhanced the Strength and Ductility in Mg17Al12 Intermetallic Compound with ce Addition, Mater. Lett. North-Holland., 2022, 320, 132324.

    CAS  Google Scholar 

  17. R. Manaila, D. Macovei, R. Popescu, A. Devenyi, A. Jianu, E. Vasile, P.B. Barna and J.L. Lábár, Nano-Icosahedral Al–Mn–Ce Phases: Structure and Local Configurations, Mater. Sci. Eng.: A, Elsevier, 2000, 294–296, p 82–85.

    Article  Google Scholar 

  18. Z. T. M. Mhawesh, Corrosıon Resıstance of Mechanıcally Clınched IF Steel and Mg-3.0 Al-1.0 Zn-0.3 Mn-0.5 Nd-Xla (X= 0.1, 0.2 And 0.5) Alloy, 2021, http://acikerisim.karabuk.edu.tr:8080/xmlui/handle/123456789/1613. Accessed 15 July 2022.

  19. M.K.S. Atia and M.K. Jain, A Novel Approach to Hot Die-Less Clinching Process for High Strength AA7075-T6 Sheets, Proc. Inst. Mech. Eng. Part C: J. Mech.l Eng. Sci. SAGE Publ. Ltd, 2020, 234(19), p 3809–3825.

    CAS  Article  Google Scholar 

  20. H. Feng, S. Liu, Y. Du, T. Lei, R. Zeng and T. Yuan, Effect of the Second Phases on Corrosion Behavior of the Mg-Al-Zn Alloys, J. Alloys. Compound. Elsevier, 2017, 695, p 2330–2338.

    CAS  Article  Google Scholar 

  21. M. Lotfpour, M. Emamy and C. Dehghanian, Influence of Cu Addition on the Microstructure, Mechanical, and Corrosion Properties of Extruded Mg-2%Zn Alloy, J. Mater. Eng Perform., Springer, 2020, 29(5), p 2991–3003. https://doi.org/10.1007/S11665-020-04856-0/FIGURES/16

    CAS  Article  Google Scholar 

  22. S.H. Wu, P. Zhang, D. Shao, P.M. Cheng, J. Kuang, K. Wu, J.Y. Zhang, G. Liu and J. Sun, Grain Size-Dependent Sc Microalloying Effect on the Yield Strength-Pitting Corrosion Correlation in Al-Cu Alloys, Mater. Sci. Eng.: A, Elsevier, 2018, 721, p 200–214.

    CAS  Article  Google Scholar 

  23. C. Yan, Y. Xin, X.B. Chen, D. Xu, P.K. Chu, C. Liu, B. Guan, X. Huang and Q. Liu, Evading Strength-Corrosion Tradeoff in Mg Alloys Via Dense Ultrafine Twins, Nature Communications 2021 12:1, Nat. Publ. Group, 2021, 12(1), p 1–9. https://doi.org/10.1038/s41467-021-24939-3

    CAS  Article  Google Scholar 

  24. X. Di, C. Xu, J. Wu, Y. Dong and Q. Shi, Competitive Effect of Grain Size and Second Phase on Corrosion Behavior of Biodegradable Mg-3Zn-1Mn-XSr Alloys, J. Mater. Eng. Perfor. Springer, 2022, 31(4), p 3136–3150.

    CAS  Article  Google Scholar 

  25. M. Lotfpour, M. Emamy and C. Dehghanian, Influence of cu Addition on the Microstructure, Mechanical, and Corrosion Properties of Extruded Mg-2%Zn Alloy, J. Mater. Eng. Perform. Springer, 2020, 29(5), p 2991–3003.

    CAS  Article  Google Scholar 

  26. L. Hong, R. Wang and X. Zhang, The Role of Nd in Corrosion Properties of Mg-12Gd-2Zn-0.4Zr Alloys, J. Mater. Eng. Perform., 2021, 30(8), p 6000–6008. https://doi.org/10.1007/s11665-021-05782-5

    CAS  Article  Google Scholar 

  27. J. Chen, G. Chen, H. Yan, B. Su, X. Gong and B. Zhou, Correlation Between Microstructure and Corrosion Resistance of Magnesium Alloys Prepared by High Strain Rate Rolling, J. Mater. Eng. Perform. Springer, 2017, 26(10), p 4748–4759.

    CAS  Article  Google Scholar 

  28. F. Zheng, H. Chen, Y. Zhang, W. Wang and H. Nie,Microstructure Evolution and Corrosion Resistance of AZ31 Magnesium Alloy Tube by Stagger Spinning, Int. J. Minerals, Metallurgy. Mater. Univ. Sci. Technol. Beijing, 2022, 29(7), p 1361–1372.

    CAS  Article  Google Scholar 

  29. C. Wang, L. Zeng, W. Ding and T. Liang, Effects of Minor RE (Y, La) on Microstructure and Corrosion Behavior of TX31 Alloys, J. Mater. Res. Technol. Elsevier BV, 2021, 14, p 69–80.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Scientific Research Projects Coordination Unit of Karabük University, Project Number: FYL-2020-2254.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İsmail Hakkı Kara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special topical focus in the Journal of Materials Engineering and Performance on Magnesium. The issue was organized by Prof. C. (Ravi) Ravindran, Dr. Raja Roy, Mr. Payam Emadi, and Mr. Bernoulli Andilab, Ryerson University.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mhawesh, Z.T., Kara, İ.H. & Zeyvelı, M. Corrosion Resistance of Interstitial Free Steel and Mg Alloys Sheets Joined by Mechanical Clinching. J. of Materi Eng and Perform (2022). https://doi.org/10.1007/s11665-022-07221-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-022-07221-5

Keywords

  • AZ31B
  • corrosion
  • La
  • mechanical clinching
  • Nd